Autodesk Robot Structural Analysis

PRZYKŁADY WERYFIKACYJNE DO OBLICZEŃ WG POLSKICH NORM

Marzec 2009

Copyright© 2009 Autodesk, Inc. Wszelkie prawa zastrzeżone

Ta publikacja, ani żadna jej część, nie może być reprodukowana w żadnej formie, żadną metodą i w żadnym celu

AUTODESK, INC. NIE UDZIELA GWARANCJI ANI RĘKOJMI, W TYM UMOWNYCH ORAZ WSZELKICH WYNIKAJĄCYCH Z OBOWIĄZUJĄCEGO PRAWA NA UDOSTĘPNIONE PRZEZ AUTODESK MATERIAŁÝ, ZARÓWNO W ODNIESIENIU DO WAD TYCH MATERIAŁÓW, JAK I PRZYDATNOŚCI DO PRZEZNACZONEGO UŻYTKU I UDOSTĘPNIA JE WYŁĄCZNIE W TAKIM STANIE, W JAKIM SIĘ ZNAJDUJĄ W CHWILI UDOSTĘPNIENIA.

W ŻĄDNYM WYPADKU AUTODEŚK, INC. NIE PONOŚI ODPOWIEDZIALNOŚCI WOBEC OSÓB TRZECICH ZA SZKODY POWSTAŁE W ZWIĄZKU Z ZAKUPEM LUB UŻYWANIEM UDOSTĘPNIONYCH MATERIAŁÓW, W TYM ZA SZKODY WYNIKŁE POŚREDNIO, BĘDĄCE SKUTKIEM UBOCZNYM ORAŻ SZKODY NIEBĘDĄCE ZWYKŁYM NASTĘPSTWEM TÁKIEGO ZAKUPU LUB UŻYWANIA. WYŁĄCZNĄ ODPOWIEDZIALNOŚĆ, JAKĄ PRZYJMUJE AUTODESK, INC. NIEZALEŻNIE OD FORMY DZIAŁANIA OGRANICZA SIĘ DO WYSOKOŚCI CENY ZAKUPU MATERIAŁÓW, O KTÓRYCH MOWA POWYŻEJ.

Autodesk, Inc. zastrzega sobie prawo do wprowadzania poprawek i udoskonalania produktów stosownie do potrzeb. Publikacja ta opisuje stan produktu w momencie jego wydania i może odbiegać od późniejszych wersji produktu.

Znaki towarowe firmy Autodesk

Następujące znaki są zarejestrowanymi znakami towarowymi firmy Autodesk, Inc. w USA i/lub w innych krajach: Autodesk Robot Structural Analysis, Autodesk Concrete Building Structures, Spreadsheet Calculator, AutoCAD, Autodesk, Autodesk Inventor, Autodesk (logo) i Autodesk Revit.

Znaki towarowe innych uprawnionych

Wszystkie pozostałe nazwy znaków firmowych, nazwy produktów lub znaki towarowe należą do ich prawnych właścicieli.

Współpraca programistyczna z innymi podmiotami

ACIS Copyright © 1989-2001 Spatial Corp. Częściowo Copyright © 2002 Autodesk, Inc. Copyright© 1997 Microsoft Corporation. Wszelkie prawa zastrzeżone.

International CorrectSpell™ Spelling Correction System© 1995 to własność Lernout & Hauspie Speech Products. N.V. Wszelkie prawa zastrzeżone.

InstallShield™ 3.0. Copyright© 1997 InstallShield Software Corporation. Wszelkie prawa zastrzeżone.

Należy zapoznać się z bieżącą dokumentacją PANTONE Color Publications w celu odszukania dokładnego koloru. PANTONE® oraz inne znaki towarowe Pantone, Inc. są wyłączną własnością

Pantone, Inc.© Pantone, Inc., 2002 Częściowo Copyright© 1991–1996 Arthur D. Applegate. Wszelkie prawa zastrzeżone. Częściowo oprogramowanie bazuje na współpracy z Independent JPEG Group.

Czcionki z biblioteki czcionek Bitstream® Copyright 1992. Czcionki z Payne Loving Trust© 1996. Wszelkie prawa zastrzeżone. Wydrukowany podręcznik oraz system pomocy powstały przy użyciu programu Idiom WorldServer™.

INSTYTUCJE RZADOWE

Używanie, powielanie lub ujawnianie podlega ograniczeniom określonym przez Rząd Stanów Zjednoczonych odpowiednio w FAR 12.212 (Commercial Computer Software-Restricted Rights) i DFAR 227.7202 (Rights in Technical Data and Computer Software).

SPIS TREŚCI

WSTĘP	1
STAL - PN-90/B-03200	2
PRZYKŁAD WERYFIKACYJNY 1 - ŚCISKANIE OSIOWE I PRZYKŁAD WERYFIKACYJNY 2 - ŚCISKANIE OSIOWE II PRZYKŁAD WERYFIKACYJNY 3 - ŚCISKANIE OSIOWE PASA KRATOWNICY PRZYKŁAD WERYFIKACYJNY 4 - ZGINANA BELKA ZABEZPIECZONA PRZED ZWICHRZENIEM PRZYKŁAD WERYFIKACYJNY 5 - ZGINANA BELKA NIEZABEZPIECZONA PRZED ZWICHRZENIEM PRZYKŁAD WERYFIKACYJNY 5 - ZGINANA BELKA NIEZABEZPIECZONA PRZED ZWICHRZENIEM PRZYKŁAD WERYFIKACYJNY 6 - ŚCISKANIE ZE ZGINANIEM SŁUPA O PRZEKROJU DWUTEOWYM	
BETON - ZBROJENIE SŁUPÓW WG PN-EN 03264:2002	27
PRZYKŁAD WERYFIKACYJNY 1 - SŁUP MIMOŚRODOWO ŚCISKANY I PRZYKŁAD WERYFIKACYJNY 2 - SŁUP MIMOŚRODOWO ŚCISKANY II PRZYKŁAD WERYFIKACYJNY 3 - SŁUP MIMOŚRODOWO ŚCISKANY III PRZYKŁAD WERYFIKACYJNY 4 - SŁUP ŚCISKANY Z DWUKIERUNKOWYM MIMOŚRODEM	
LITERATURA	

WSTĘP

Podręcznik weryfikacyjny zawiera przykłady obliczeń konstrukcji zaprojektowanych i obliczonych przy pomocy programu **Autodesk Robot Structural Analysis version 2010**. Wszystkie przykłady zostały wzięte z dostępnej literatury i publikacji. Wybrano przykłady w możliwie najszerszym zakresie pokrywające zakres zagadnień obliczeń normowych. Część obliczeń porównywana jest także z obliczeniami ręcznymi. Odpowiednie rezultaty (oznaczone jako "Książka") są wybierane i porównywane z rezultatami otrzymanymi przy pomocy Autodesk Robot Structural Analysis (oznaczone jako "Robot").

Każdy przykład zawiera następujące części:

- Tytuł przykładu
- specyfikacja przykładu
- Wynik obliczeń programem Robot
- Wydruk rezultatów obliczeń
- Porównanie wyników: Robot wyniki książkowe/ręczne
- Wnioski (jeśli konieczne)

Autodesk Robot Structural Analysis - Przykłady weryfikacyjne dla Polskich Norm

Stal - PN-90/B-03200

PRZYKŁAD WERYFIKACYJNY 1 - Ściskanie osiowe I

Przykład zaczerpnięty z PODSTAWY PROJEKTOWANIA KONSTRUKCJI METALOWYCH autorstwa Jana Żmudy

ŢYTUŁ:

Ściskanie osiowe (Przykład 4.4).

OPIS PROBLEMU:

Zaprojektować trzon słupa obustronnie podpartego przegubowo nieprzesuwnie, o wysokości 6 m, z przekrojem poprzecznym spawanym z blach w kształcie H, ze stali ST3S. Słup obciążony będzie siłą P = 1150 kN.

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta, wstępnie użyty zostanie gotowy zestaw parametrów, który następnie zostanie zmodyfikowany i zapisany pod nową nazwą. W tym celu należy w oknie DEFINICJE/PRĘTY wybrać z listy *Typ pręta* predefiniowany zestaw parametrów **SŁUP**. Aby go zmodyfikować kliknij w przycisk *Parametry*. Po otwarciu okna DEFINICJA PRĘTA – PARAMETRY wpisz nową nazwę SŁUP1 w polu *Typ pręta*. Zgodnie z przykładem należy przyjąć wartości 0.95 współczynników długości wyboczeniowej na obydwu kierunkach wyboczenia Y i Z. W tym celu przejdź do pola *Wsp. Długości wyboczeniowej miy* i wpisz wartość 0.95. W podobny sposób zdefiniuj współczynnik długości wyboczeniowej na kierunku Z. Zapamiętaj nowo zdefiniowany zestaw parametrów pręta 1 wciskając przycisk *Zapisz*.

🗲 Definicje - PN-90/B-03200	🎏 Definicja pręta – parametry – PN-90/B-03200	×
Pręty Grupy	Typ pręta: Słup1	Zapisz
Numer: 1 ▼ Nowy Dane podstawowe Lista prętów: Nazwa:	Wyboczenie względem osi Y Długość pręta ly: Drugość pręta ly: Drugość pręta la: realna i.000 mgoźnik 1.000 Wsp. długości wyboczeniowej wsp. długości wyboczeniowej mi y: 0.950	Zamknij
Lirupa: Lyp preta: Srupi OK Usuń Zapisz Pomoc	Parametr imperfekcji ny: Parametr imperfekcji nz: Image: Strain algo: St	<u>U</u> żytkowanie <u>W</u> ięcej
Obliczenia - PN-90/B-03200 Opcje weryfikacyjne C Weryfikacyja prętów. I Lista Wymiarowanie grup: Opcje Optygalizacja Opcje Obciążenia Lista Stan graniczny Lista przypadków obciążeniowych	✓ Wyboczenie giętno-skrętne profili monosymetrycznych Kgztałtowniki poddane wyżarzaniu Parametry zwichrzeniowe Typ zwichrzenia: Iyp obciążenia: Eoziom obciążenia: Krzywa niestałeczności Belka o przekroju dwuteowym usztywniona bocznym stężeniem Podrzym wymuszającym płożenie środka obrotu Y spółrzędna płaszczyzny stężenia: 20 w spółrzędna płaszczyzny stężenia:	Przekrój złożony
OK Konfiguracja Obliczenia Pomoc	O użytkownika A1 1.000 A2 1.000 B 1.000	Pomoc

W celu rozpoczęcia obliczeń należy przejść do okna OBLICZENIA. W polu Wymiarowanie grup wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*. Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.).

1	PN-90/B-03200	- Wymiarowanie	grup prętów ((SGN) 1					_ 🗆 🗵
	Rezultaty Komuni	katy						<u>N</u> otka oblicz.	Zamknij
	Pręt	Profil	Materiał	Lay	Laz	Wytęż.	Przypadek	Zmień	Pomoc
	Grupa: 1 GRL	J 1							
	1	🔀 IS 1	STAL	63.462	71.494	1.160	1 TEST	Zmień <u>W</u> sz.	
l									

Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI, w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń. Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

W przykładzie przyjęto do obliczeń przekrój typu H o wymiarach H x B x tw x tf = 180 x 300 x 6 x 10 mm. Ponieważ profil jest klasy 4 obliczenia powinny być prowadzone z uwzględnieniem efektu niestateczności lokalnej ścianki (tutaj półki). Od wersji 13.5 Robot posiada możliwość przeprowadzania obliczeń dla profili znajdujących się w stanie **krytycznym** lub **nadkrytycznym**. Domyślnie przyjmowane są obliczenia w stanie krytycznym. Poniżej prezentowane są wyniki obliczeń w stanie krytycznym.

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/B-03200</i> TYP ANALIZY: Wymiarowanie grup prętów							
GRUPA: 1 GRU 1 PRĘT: 1	PUNKT: 1	WSPÓŁRZĘDNA: $x = 0.00 L = 0.00 m$					
OBCIĄŻENIA: Decydujący przypadek ol	bciążenia: 1 TEST						
MATERIAŁ: STAL fd = 215.00 MPa	E = 205000.00 MPa						

h=20.0 cm

PARAMETRY PRZEKROJU: IS 1

b=30.0 cm tw=0.6 cm tf=1.0 cm	Ay=60.000 cm2 Iy=5711.600 cm4 Wely=571.160 cm3	Az=10.800 cm2 Iz=4500.324 cm4 Welz=300.022 cm3	Ax=70.800 cm2 Ix=20.849 cm4
h = 20.0 cm	4x = 60,000,000	$A = 10,800 \text{ am}^2$	$A_{\rm H} = 70,800{\rm cm}^2$

SIŁY WEWNĘTRZNE I NOŚNOŚCI:

N = 1150.00 kN Nrc = 1522.20 kN KLASA PRZEKROJU = 4

PARAMETRY ZWICHRZENIOWE:

PARAMETRY WYBOCZENIOWE:

względem osi Y:		względem osi Z:	
Ly = 6.00 m	$Lambda_y = 0.752$	Lz = 6.00 m	$Lambda_z = 0.848$
Lwy = 5.70 m	Ncr y = 3556.82 kN	Lwz = 5.70 m	Ncr z = 2802.51 kN
Lambda y = 63.462	fi $y = 0.810$	Lambda z = 71.494	fi z = 0.651

FORMUŁY WERYFIKACYJNE:

N/(fi*Nrc) = 1150.00/(0.651*1522.20) = 1.160 > 1.000 (39)

Profil niepoprawny!!!

Przekrój słupa należy przekonstruować i powtórzyć obliczenia. Gdyby założyć wykonanie wyżarzania odprężającego słupa, co jest rzadko praktykowane, wtedy współczynnik φ można przyjąć wg krzywej b. Nośność przekroju słupa będzie wtedy zapewniona. W celu weryfikacji pręta poddanego wstępnemu wyżarzaniu w oknie dialogowym DEFINICJA PRĘTA – PARAMETRY uaktywnij opcję *Kształtowniki poddane wyżarzaniu*. Następnie zapisz zmodyfikowany zestaw parametrów wciskając klawisz *Zapisz*. Uruchom ponownie obliczenia. Wyniki dla pręta poddanego wyżarzaniu pokazano poniżej.

🗾 Definicja pręta - parametry	- PN-90/B-03200	×
Typ pręta: Słup1		Zapisz
Wyboczenie względem osi Y Długość pręta ly: C realna I 1,000	Wyboczenie względem osi Z Długość pręta Iz: O re <u>a</u> lna I ,000	Zamknij
Wsp. długości wyboczeniowej mi y: 0,950	Wsp. długości wyboczeniowej mi z: 0,950	
Parametr imperfekcji ny:	Parametr imperfekcji nz:	<u>U</u> żytkowanie
 automatyczny użytkownika 1,200 	 automatyczny użytkownika 1,200 	<u>W</u> ięcej
 ✓ Wyboczenie giętno-skrętne p ✓ Kształtowniki poddane wyżar 	profili monosymetrycznych rzaniu	Przekrój <u>z</u> łożony
Parametry zwichrzeniowe		
Typ zwichrzenia: 🗙 🛛	/spółczynnik dł.zwichrzeniowej	
Iyp obciążenia:	górna półka dolna dolna półka dolna doln	
Poziom obciążenia: Krzywa niestateczności: a0 💌	iońce pręta przy 💿 przegubowe kręcaniu: 💿 <u>s</u> ztywne	
Belka o przekroju dwuteowym podłużnym wymuszającym po	n usztywniona bocznym stężeniem okożenie środka obrotu	
ze l Współrzędna płaszczyzn	ny stęż <u>e</u> nia: zc <mark>0,000 </mark> x h	
Współczynniki do obliczeń Mcr (T	ablica Z1-2):	
O użytkownika A1 1,000	A2 1,000 B 1,000	Pomoc

WYNIKI - norma - PN-90/8-03200		3	WYNIKI - nor	ma - PN-90/0-0	33200			
Image: State Open 1 GRU 1 Profit niepopaarmy Image: State Profit niepopaarmy Image: State Image: State Image: State Profit niepopaarmy Image: State Image: S	ОК		IS 1		Grupa: Pięt 1 Punkt / Wa Przypadek	66/U 1 Profit niepoprawny półrzędna: 1 / x = 0.00 L = 0.00 m bócząsenia: 1 / EST	9 9	ОК
Wyniki uproszczone Wyniki szczegółowe	Zuena		Wyniki uprosze	zone Wyniki szo	zegółowe:			
SILY N = 1150.00 kN	1		Symbol	Wartość	Jednostka	Opis symbolu Paragraf		
Nrc = 1522.20 kN					c	harakterystyki przekroju: IS 1		
KLASA PRZEKROJU = 4	Sitv		Ax	70.800	cm2	pole powierzchni przekroju		Silv
ZWICHRZENIE			Ay	60.000	cm2	pole powierzchni czymnej przy ścinaniu w kierunku Y		
	Szczegółowa		Az	10.800	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Z		Szczegółowa
			bx.	20.849	cm4	moment bezwładności przy skręcaniu		
	31		37	5711.800	cm4	moment bezwładności względem osi Y		
WTBULZENIE 7 WTBULZENIE 2 WTBULZENIE 2	1		12	4500.324	cind	inoment bezwładności względem osi Z		
Lwe = 5.70 m Ner v = 3556.82 kN Lwe = 5.70 m Ner v = 2602.51 kN	Distance of the second		Wely	571.160	cmJ	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Y		Design of the
Lambda y = 63.462 fi y = 0.070 Lambda z = 71.494 fi z = 0.749	Ngela obiicz.		Weiz	300.022	cm3	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Z		Ngela obecz
	2		h	20.0	cm	wysokość przekroju		
N/0(Nec) = 1150.00/0.749/1522.20) = 1.009 > 1.000 (39)			b	30.0	cm	szerokość przekroju		
			17	1.0	cm.	grubošć półki		
			tw	0.6	cm	grubošć środnika		
			ry	9.0	cm	promień bezwładności przekroju wzgl. osi Y		
	Pomoc							Pomoc

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/B-032</i> TYP ANALIZY: Wymi	00 arowanie grup prętów		
GRUPA: 1 GRU 1 PRĘT: 1	PUNKT: 1	WSPÓŁRZĘI	DNA: $x = 0.00 L = 0.00 m$
OBCIĄŻENIA: Decydujący przypadek ob	ciążenia: 1 TEST		
MATERIAL: STAL fd = 215.00 MPa	E = 205000.00 MPa		
PARAMETRY h=20.0 cm	Y PRZEKROJU: IS 1		
b=30.0 cm tw=0.6 cm tf=1.0 cm	Ay=60.000 cm2 Iy=5711.600 cm4 Wely=571.160 cm3	Az=10.800 cm2 Iz=4500.324 cm4 Welz=300.022 cm3	Ax=70.800 cm2 Ix=20.849 cm4
SILY WEWNĘTRZNE N = 1150.00 kN Nrc = 1522.20 kN	I NOŚNOŚCI:		
KLASA PRZEKROJU =	4		
PARAMETRY Z	WICHRZENIOWE:		
PARAMETRY WYBOC względem osi Y: Ly = 6.00 m Lwy = 5.70 m Lambda y = 63.462	CZENIOWE: Lambda_y = 0.752 Ncr y = 3556.82 kN fi y = 0.870	względem osi Z: Lz = 6.00 m Lwz = 5.70 m Lambda z = 71.494	Lambda_z = 0.848 Ncr z = 2802.51 kN fi z = 0.749
FORMUŁY WERYFIK N/(fi*Nrc) = 1150.00/(0.7	ACYJNE: 49*1522.20) = 1.009 > 1.0	00 (39)	

Profil niepoprawny!!!

PORÓWNANIE WYNIKÓW:

Nośności, warunki normowe	Robot	Książka
<u>Pręt nie poddany wyżarzaniu:</u> 1.Nośność obliczeniowa preta przy ściskaniu N _{Bc} [kN]	1522.2	1522.2
2.Współczynnik wyboczeniowy φ_z wzgl. osi z-z 3.Warunek sprawdzający [wzór (39) PN-90/B-32000]	0.651 1.16	0.65 1.16
<u>Pręt poddany wyżarzaniu:</u> 1.Współczynnik wyboczeniowy φ _z wzgl. osi z-z 2.Warunek sprawdzajacy [wzór (39) PN-90/B-32000]	0.749 1.009	0.747 1.011

PRZYKŁAD WERYFIKACYJNY 2 - Ściskanie osiowe II

Przykład zaczerpnięty z artykułu "Obliczenia prętów ściskanych osiowo według PN-90/B-3200" J. Augustyn, J. Bródka, J. Laguna . Artykuł zamieszczono w polskim czasopiśmie dla inżynierów budownictwa INŻYNIERIA I BUDOWNICTWO No. 1'91

TYTUŁ:

Ściskanie osiowe pręta o przekroju klasy 4 (Przykład 1).

OPIS PROBLEMU:

Przeprowadzić weryfikację słupa wykonanego ze stali 18G2AV poddanego obciążeniu siłą osiową o wartości obliczeniowej P = 450 kN. Przyjąć schemat słupa obustronnie przegubowo podpartego w obydwu kierunkach wyboczenia. Sugerowany przekrój analizowanego słupa IPE 300.

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta można użyć gotowego zestawu parametrów o nazwie SŁUP. W tym celu w oknie dialogowym DEFINICJE/PRĘTY wybierz z listy Typ pręta predefiniowany zestaw parametrów SŁUP. Zapisz nową definicję pręta 1 wciskając klawisz Zapisz.

🗾 Defini	cje - PN-90/B	03200			
Pręty	Grupy				
<u>N</u> ume – Dane	n: ⊨ podstawowe –	1			Nowy
Lista	prętów:	1]	
Na <u>z</u> w	ia:			<u> </u>	arametry
<u>G</u> rupa	a:	• Тур	pręta:	Słup	_
OK			Zapisz		Pomoc

W celu rozpoczęcia obliczeń przejdź do okna dialogowego OBLICZENIA. W polu Weryfikacja prętów wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*.

🗊 Obliczenia - PN-90/B-03200	
Opcje weryfikacyjne	
	Lista
O Weryfikacja grup:	Lista
🔿 Wymiarowanie grup:	Lis <u>t</u> a
🗌 Opty <u>m</u> alizacja Op<u>c</u>je	
Obciążenia Stan	graniczny
Lista przypadków o <u>b</u> c.: 1	ośność
Selekcja przypadków obciążeniowych	żytkowanie
OK Konfiguracja	Pomoc

Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.).

1	F PN-90/B-03200 - Weryfikacja prętów (5GN) 1 📃 🔍											
	Rezultaty Komuni	katy							<u>N</u> otka oblicz.	Zamknij		
	Pręt	Profil	Materiał	Lay	Laz	Wytęż.	Przypadek			Pomoc		
	1	📧 IPE 300	STAL 18G2-37	33.704	125.386	0.928	1 TEST		And de service			
									Analian			
									Arializa			

Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI, w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń. Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

Service		K SWYNIKI - norma - PN-90/B-03200								
Julio Post Post <t< th=""><th><u>ОК</u></th><th></th><th>IPE 300</th><th>otub</th><th>Prot 1 Punkt Z Ws Przypadek (</th><th>Prolit poprawny Prolit poprawny obciązenia: 1 / x = 0.00 L = 0.00 m obciązenia: 1 / ES1</th><th>0</th><th>ОК</th></t<>	<u>ОК</u>		IPE 300	otub	Prot 1 Punkt Z Ws Przypadek (Prolit poprawny Prolit poprawny obciązenia: 1 / x = 0.00 L = 0.00 m obciązenia: 1 / ES1	0	ОК		
Wyniki uproszczone Wyniki szczegórowe	Zalena		Wyniki uproszca	zone Wyniki szo	zegółowe:			Zaime		
SILY N = 450.00 kN			Symbol	Wartość	Jednostka	Opis symbolu Paragraf				
Nrc = 1066.47 kN					Cha	rakterystyki przekroju: IPE 300				
KLASA PRZEKROJU = 4	Sity		Ax	\$3.012	cm2	pole powierzchni przekroju		Şily		
ZWICHRZENIE			Ay	32.100	cm2	pole powierzchni czymnej przy ścinaniu w kierunku Y				
	Szczegółowa		Az	21.300	cm2	pole powierzchni czynnej przy ścinaniu w kieruniu Z		Szczegółowa		
			b:	19.470	cm4	moment bezwładności przy skręcaniu				
			37	8358.110	cm4	moment bezwładności względem osi Y				
WTBULZENE 7 WTBULZENE 2 WTBULZENE 2			12	603.779	cand	moment bezwładności względem osi Z				
IV Lun 4.20m Nove 9504 27 kN IV Lun 4.20m Nove 952 52 kN	I was not		Wely	\$57.074	cmJ	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Y		(mm - m - 1		
Lambda y = 33.704 fi y = 0.960 Lambda z = 125.306 fi z = 0.260	Nglka oblicz.		Welz	80.504	cm3	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Z		Nglka oblicz.		
DE20 TATY			h	30.0	cm	wysokość przekroju				
N/07Nsc1+450.00/0.260*1966.471=0.928<1.000 (39)			b	15.0	cm	szerokość przekroju				
			11	1,1	cm	grubošć półki				
			tw	0.7	cm	grubość środnika				
			ry .	12.5	cm	promień bezwładności przekroju wzgl. osi Y	-			
	Pomoc		-				_	Ponicc		

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/B-03</i> TYP ANALIZY: Wer	3200 yfikacja prętów		
GRUPA: PRĘT: 1	PUNKT: 1		WSPÓŁRZĘDNA: x=0.00 L
OBCIĄŻENIA: Decydujący przypadek o	obciążenia: 1 TEST		
MATERIAŁ: STAL fd = 370.00 MPa	18G2-370 E = 205000.0	0 MPa	
PARAMETR h=30.0 cm	Y PRZEKROJU: IPE 300		
b=15.0 cm tw=0.7 cm tf=1.1 cm	Ay=32.100 cm2 Iy=8356.110 cm4 Wely=557.074 cm3	Az=21.300 cm2 Iz=603.779 cm4 Welz=80.504 cm3	Ax=53.812 cm2 Ix=19.470 cm4
SIŁY WEWNĘTRZN N = 450.00 kN Nrc = 1866.47 kN KLASA PRZEKROJU	E I NOŚNOŚCI: = 4		
PARAMETRY	ZWICHRZENIOWE:		
PARAMETRY WYBC I_{10} względem osi Y: Ly = 4.20 m Lwy = 4.20 m Lambda y = 33.704	DCZENIOWE: Lambda_y = 0.507 Ncr y = 9584.27 kN fi y = 0.968	$ \begin{array}{c} \hline 1 \\ 10 \\ 10 \\ Lz = 4.20 \text{ m} \\ Lwz = 4.20 \text{ m} \\ Lambda z = 125.386 \end{array} $	Z: Lambda_z = 1.888 Ncr z = 692.52 kN fi z = 0.260
FORMUŁY WERYFI N/(fi*Nrc) = 450.00/(0.2	KACYJNE: 260*1866.47) = 0.928 < 1.00	0 (39)	

Profil poprawny!!!

PORÓWNANIE WYNIKÓW:

Nośności, warunki normowe	Robot	Artykuł
1. Nośność obliczeniowa pręta przy ściskaniu N _{Rc} [kN]	1866.47	1867
2. Współczynnik wyboczeniowy ϕ_z wzgl. osi z-z	0.260	0.257
3. Warunek sprawdzający [wzór (39) PN-90/B-32000]	0.928	0.938

PRZYKŁAD WERYFIKACYJNY 3 - Ściskanie osiowe pasa kratownicy

Przykład zaczerpnięty z artykułu "Obliczenia prętów ściskanych osiowo według PN-90/B-3200" J. Augustyn, J. Bródka, J. Laguna. Artykuł zamieszczono w polskim czasopiśmie dla inżynierów budownictwa INŻYNIERIA I BUDOWNICTWO No. 1'91

TYTUŁ:

Ściskanie osiowe pasa kratownicy wykonanego z teownika spawanego (Przykład 2).

OPIS PROBLEMU:

Przeprowadzić weryfikację górnego pasa kratownicy wykonanego ze stali 18G2A – 305 MPa poddanego obciążeniu siłą osiową o wartości obliczeniowej P = 120 kN. Przyjąć schemat pręta obustronnie przegubowo podpartego w obydwu kierunkach wyboczenia. Sugerowany przekrój analizowanego słupa to spawany przekrój teowy o wymiarach h x b x tw x tf = 100 x 100 x 10 x10 mm.

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta, wstępnie użyty zostanie gotowy zestaw parametrów, który następnie zostanie zmodyfikowany i zapisany pod nową nazwą. W tym celu należy na zakładce DEFINICJE/PRĘTY wybrać z listy *Typ pręta* predefiniowany zestaw parametrów **SŁUP**. Aby go zmodyfikować kliknij w przycisk *Parametry*. Po otwarciu okna DEFINICJA PRĘTA – PARAMETRY wpisz nową nazwę SŁUP1 w polu *Typ pręta* oraz wyłącz opcję *Wyboczenie giętno-skrętne profili monosymetrycznych*. Zapisz nową definicję pręta 1 wciskając klawisz Zapisz.

5 Definicje - PN-90/B	-03200	
Pręty Grupy		
<u>N</u> umer: Dane podstawowe-	1 v Ng	<u>owy</u>
Lista prętów:	1	
Na <u>z</u> wa:	Para	ametry
<u>G</u> rupa: 1	▼ <u>I</u> yp pręta: Słup1	
ОК	<u>U</u> suń <u>Z</u> apisz	Pomoc

W celu rozpoczęcia obliczeń przejdź do okna dialogowego OBLICZENIA. W polu Weryfikacja prętów wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*.

💋 Obliczenia - PN-90/B-03200	
Opcje weryfikacyjne	
Weryfikacja prętów: 1	Lista
O Weryfikacja grup:	Lista
🔿 Wymiarowanie grup:	Lis <u>t</u> a
🗖 Opty <u>m</u> alizacja	Op <u>cj</u> e
C Obciążenia	Stan graniczny
Lista przypadków o <u>b</u> c.: 1	✓ Nośność
Selekcja przypadków obciążeniowy	vch
OK Konfiguracja	Obliczenia Pomoc

Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.).

1	PN-90/B-03200		_ 🗆 ×							
	Rezultaty Komuni	katy	l .						Notka oblicz.	Zamknij
	Pręt		Profil	Materiał	Lay	Laz	Wytęż.	Przypadek		Pomoc
	1	0K	TEOW_1	STAL 18G2-30	87.879	146.971	0.968	1 STA1		
									Analiza	

Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI, w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń. Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

WYNIXI - norma - PN-90/II-03200		I 📧 WY	NIKI - norn	na - PN-90/B-0	3200			
Auto Profi poprawny Image: Constraint of the second secon	OK.	FFE	300	_ĝuto ▼	Pret 1 Punkt / Wa Przypadek o	Proti poprawny półrządna: 1 / x = 0.00 L = 0.00 m bolązenia: 1 / EST	0 0	OK.
Wyniki uproszczone Wyniki szczegółowe	Zaisos	Wp	niki uproszcz	one. Wyniki szc	zegółowe			7(0)200
SILY N = 490.00 kN			Symbol	Viertość	Jednostka	Opis symbolu Peregraf		
Nrc = 1866.47 kN					Cha	rakterystyki przekroju: IPE 300		
KLASA PRZEKROJU = 4	Sky	A	UX	53.812	cm2	pole powierzchni przekroju		Sitv
ZWICHRZENIE		A	Υ	32.100	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Y		
	Szczegołowa	A	z.	21.300	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Z		Szczegorowa
		b	ç	19.470	cm4	moment bezwiadności przy skręcaniu		
- WARDCZENIE V		hy	r	8356.110	cm4	moment bezwładności względem osi Y		
Final Land 20m Landvia a = 0.507		tz		603.779	cm4	moment bezwładności względem osi Z		
Lwg = 4.20 m Nor g = 9584.27 kN II Lwg = 4.20 m Nor g = 692.52 kN	Notes abdeer	V	Vely	557.074	cm3	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Y		Hoteshtee
Lambda y = 33,704 fi y = 0.960 Lambda z = 125,306 fi z = 0.260	regora conce	N 1	Velz	00.504	cm3	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Z		Ngoka coecz.
- BEZHITATY		h		30.0	cm	wysokość przekroju		
N/(5*Nsc) = 450.00/(0.260*1966.47) = 0.928 < 1.000.(39)		b		15.0	cn	szerokość przekroju		
		tr		1.1	cm	grubość półki		
		ty	N	0.7	cm	grubošć środnika		
	Dunas	0	ý	12.5	cn	promień bezwładności przekroju wzgl. osi Y	-	Dana I
J	(comoc						_	PromioC

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/B-03</i> TYP ANALIZY: Wer	3200 yfikacja prętów			
GRUPA: PRĘT: 1	PUNKT: 1	WSI	PÓŁRZĘDN	A: x=0.00 L
OBCIĄŻENIA: Decydujący przypadek o	obciążenia: 1 STA1			
MATERIAL: STAL fd = 305.00 MPa	18G2-305 E = 205000.0	00 MPa		
PARAMETRY	Y PRZEKROJU: TEOW_	_1		
b=10.0 cm tw=1.0 cm tf=1.0 cm	Ay=10.000 cm2 Iy=235.417 cm4 Wely=30.376 cm3	Az=10.000 cm2 Iz=84.167 cm4 Welz=16.833 cm3	Ax=20.00 Ix=6.247	00 cm2 cm4
SIŁY WEWNĘTRZN N = 120.00 kN Nrc = 610.00 kN	E I NOŚNOŚCI:			
KLASA PRZEKROJU	= 3	Vz = Vrz_	= 0.23 kN _n = 173.44 k	N
PARAMETRY	ZWICHRZENIOWE:			
PARAMETRY WYBC	OCZENIOWE:	11		
Ly = 3.015 m Lwy = 3.015 m Lambda y = 87.879	Lambda_y = 1.241 Ncr y = 523.98 kN fi y = 0.440	Lz = 3.015 m Lwz = 3.015 m Lambda z = 146.971	Lambda Ncr z = fi z = 0.2	_z = 2.075 187.34 kN 203
FORMUŁY WERYFI N/(fi*Nrc) = 120.00/(0.2 Vz/Vrz = 0.001 < 1.000	KACYJNE: 203*610.00) = 0.968 < 1.00 (53)	0 (39)		
Profil poprawny!!!				
PORÓWNANIE WYN	IKÓW:	OWA	Robot	Artykuł
1 Nośność obliczeni	owa preta przy ściekaniu	N ₂ [kN]	610.00	610
2 Wsnółczynnik wyb	orzeniowy (o wzal osi-	ייא _ל [רויא] 7-7	0.203	0.202
3 Warunek sprawdz	aiacv [wzór (39) PN-90/B	3-320001	0.968	0.974

PRZYKŁAD WERYFIKACYJNY 4 - Zginana belka zabezpieczona przed zwichrzeniem

Przykład zaczerpnięty z PODSTAWY PROJEKTOWANIA KONSTRUKCJI METALOWYCH autorstwa Jana Żmudy

TYTUŁ:

Zginana belka wolno podparta w pełni zabezpieczona przed zwichrzeniem (Przykład 5.5).

OPIS PROBLEMU:

Zaprojektować ze stali ST3S swobodnie podpartą belkę środkową rusztu stropu kondygnacji powtarzalnej budynku wielokondygnacyjnego. Przyjąć obciążenie obliczeniowe belki w postaci obciążenia równomiernie rozłożonego o wartości 24.21 kN/mb belki. Długość teoretyczna belki I = 6.0 m (przekrój IPE 300).

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta, wstępnie zostanie użyty gotowy zestaw parametrów, który następnie zostanie zmodyfikowany i zapisany pod nową nazwą. W tym celu należy w oknie DEFINICJE/PRĘTY wybrać z listy *Typ pręta* predefiniowany zestaw parametrów **BELKA**.

🗲 Definicje - PN-90/B	-03200	
Pręty Grupy		
<u>N</u> umer: - Dane podstawowe-	1	Nowy
Lista prętów:	1	
Na <u>z</u> wa:		<u>P</u> arametry
<u>G</u> rupa:	▼ <u>T</u> yp pręta:	Belka 💌
OK	Zapisz	Pomoc

W celu modyfikacji parametrów należy kliknąć w przycisk *Parametry*. Po otwarciu okna DEFINICJA PRĘTA – PARAMETRY wpisz nową nazwę BELKA1 w polu *Typ pręta*. Zgodnie z przykładem belka jest zabezpieczona przed zwichrzeniem. Aby program pomijał w obliczeniach wpływ zwichrzenia kliknij buton *Typ zwichrzenia*. W dialogu TYP ZWICHRZENIA wybierz ostatnią ikonę (*bez zwichrzenia*) a następnie wciśnij OK. Następnie otwórz okno DEFINICJA PRĘTA – PARAMETRY DODATKOWE klikając w buton *Więcej*. Zdefiniuj wartość współczynnika rezerwy plastycznej αpy = 1.07. Zamknij dialog a następnie zapamiętaj nowo zdefiniowany zestaw parametrów pręta 1 wciskając przycisk *Zapisz*.

🖅 Ty	/p zwichrzenia	×	
	element obciążony symetrycznie wspornik bez zwichrzenia	OK Anuluj Pomoc	
	Zapisz Zamknij Użytkowanie Włęcej Przekrój żłożony	Definicja pręta - parametry dodatkowe Parametry obciążeniowe Wsp. Beta: kier J: Ubciążenie pojedynoczych ceowników Ubciążenie pojedynoczych ceowników Ubciążenie pojedynoczych ceowników dładzienie elementu otworami na łączniki Pole otworów w półkach: Aoy = 0.000 cm2 Ołkowy powiejszone w strefie ściskanej Pręty pojedynocze zamocowane mimośrdowo Połe oczęści przylgowei: A1 0.000 cm2 Połe oczęści przylgowei: A1 0.000 cm2 Połe oczęści przylgowei: A1 0.000 cm2 Stateczność lokalna przekrojów klasy 4 automatyczna użytkownika alfa pz 1.00 Wsp. niestateczności lokalne ji fi p 1.00 Wsg. niestateczności fi py 1.00	OK Anului
niestateczności: 190 Bełka o przekroju dwutkowym usztywniona bocznym stężeniem podużnym wymuszającym położenie środka obrotu 2 0.00 x h Współczynniki do obliczeń Mcr (Tablica Z1-2): automatyczne zatomatyczne zatomatyczne	_	Wytrzymałość obliczeniowa środnika falistego Zmodyfikowana wartość: fdw Profile ażurowe Zasięg strefy przypodporowej lp = 0,00 m Dodatkowe warunki dla rur okrągłych Jedatkowe zninanie rur	Porroc

W celu rozpoczęcia obliczeń należy przejść do okna OBLICZENIA. W polu Weryfikacja prętów wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*. Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.).

1	FPN-90/B-03200		_ 🗆 ×								
	Rezultaty Komuni	<u>N</u> otka oblicz.	Zamknij								
	Pręt		Profil	Materiał	Lay	Laz	Wytęż.	Przypadek			Pomoc
	1	0K	IPE 300	STAL St3S-21	48.15	179.12	0.85	1 TEST			
										Analiza	

Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI, w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń. Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

1.Program wykonuje standardowo sprawdzenie pręta w 3 punktach obliczeniowych tzn. na początku, w środku oraz na końcu pręta. Dla tak zdefiniowanych warunków obliczeniowych największy stopień wytężenia osiągany jest w środku belki gdzie moment zginający osiąga swoją wartość maksymalną. Poniżej zaprezentowano rezultaty tych obliczeń.

SWYNIKI - norma - PN-90/8-03200		ء ا	WYNIKI - norr	ma - PN-90/8-0	3200			
Auto Prof. 1 Profit popesency Image: Constraint of the second	<u>ОК</u>		IPE 300	<u>Auto</u>	Prot. 1 Punkt / Wa Przypadek	Politzpána: 2 / x = 0.50 L = 2.00 m obciązenia: 1 TEST	9	<u>ОК</u>
Wyniki uproszczone Wyniki szczegółowe	Zaime		Wyniki uproszca	tone Wyniki szc	zegółowe:			Zaime
SILY My = 100.94 kN*m			Symbol	Wartość	Jednostka	Opis symbolu Paragraf		
May = 120.15 kN/m May_v = 120.15 kN/m					СБа	rakterystyki przekroju: IPE 300		
KLASA PRZEKROJU = 1	Sity		Ax	\$3.012	cm2	pole powierzchni przekroju	1	Şiły
ZWICHRZENIE			Ay	32.100	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Y		
	Szczegółowa		Az	21.300	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Z	181	Szczegółowa
			b:	19.470	cm4	moment bezwładności przy skręcaniu	101	
LAND THE REPORT OF			ły	8356.110	cm4	moment bezwładności względen osi Y	101	
WTBULZENIE 2 WTBULZENIE 2			12	603.779	cand	inoment bezwładności względem osi Z	181	1
	(Notes and a		Wely	\$57.074	cmJ	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Y	101	and the second second
	Ngela.obecz.		Welz	80.504	cm3	elastyczny wskaźnik wytrzymałości przekroju wzgl. osi Z	181	Ngeta obicz.
DETENTATY			h	30.0	¢m.	wysokość przekroju	l o l	
Mov/18:14(v) = 108.94/11.00*128.15) = 0.85 < 1.00 (52)			b	15.0	cm	szerokość przekroju		
- A for the second second for			11	1,1	cm	grubošć półki		
			tw	0.7	cm	grubość środnika		
			1Y	12.5	cm	promień bezwiadności przekroju wzgl. osi Y		
	Pomoc							Pómoc

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <u>PN-90/B-</u> TYP ANALIZY: W	03200 eryfikacja prętów		
PRĘT: 1	PUNKT: 2	WSPÓŁRZE	EDNA: $x = 0.50 L = 3.00 m$
OBCIĄŻENIA: Decydujący przypadek	k obciążenia: 1 TEST		
MATERIAŁ: STA fd = 215.00 MPa	L St3S-215 E = 205000.0	00 MPa	
PARAMET	RY PRZEKROJU: IPE 300)	
b=15.0 cm	Ay=32.100 cm2	Az=21.300 cm2	Ax=53.812 cm2
tw=0.7 cm	Iy=8356.110 cm4	Iz=603.779 cm4	Ix=19.470 cm4
tf=1.1 cm	Wely=557.074 cm3	Welz=80.504 cm3	
SIŁY WEWNĘTRZI KLASA PRZEKROJ	NE I NOŚNOŚCI: My = 108.94 I Mry = 128.15 Mryv = 128.1 U = 1	kN*m kN*m 5 kN*m	
PARAMETR	RY ZWICHRZENIOWE:		
PARAMETRY WYE	BOCZENIOWE:	względem osi Z	:
FORMUŁY WERYF My/(fiL*Mry) = 108.9	FIKACYJNE: 04/(1.00*128.15) = 0.85 < 1.00	0 (52)	
Profil poprawny!!	·····		

2. W celu sprawdzenia wytężenia pręta na podporach gdzie siły ścinające osiągają swoje wartości maksymalne należy zażądać, aby program sprawdził belkę tylko w dwóch punktach. Wystarczy w oknie OBLICZENIA wybrać przycisk KONFIGURACJA a następnie w pojawiającym się oknie dialogowym wpisać liczbę 2 w polu *Liczba punktów*. Wyniki obliczeń pokazano poniżej.

SWYNIKI - norma - PN-90/IB-03200] 🖻	WYNIKI - nor	ma - PN-90/0-0	3200			
Auto Prof. 1 Prof. 200 Prof. 1 / x = 0.00 L = 0.00 m PFC 200 Propadek obcidenia: 1 / x = 0.00 L = 0.00 m	OK		IPE 300	Auto	Pięt 1 Punikt / Wa Przypadek	pilrzędna: 1 / x = 0.00 L = 0.00 m obciątenia: 1 TEST	9	0K
Wyniki uproszczone Wyniki szczegółowe	Zaima		Wyniki uproszca	zone Wyniki szc	zegółowe:			Zaime
SIŁY			Symbol	Wartość	Jednostka	Opis symbolu Paragraf		
Yz = 72.63 kN					Chi	rakterystyki przekroju: IPE 300		
KLASA PRZEKROJU = 1 Vrz = 265.61 kN	Silv		A×.	53.012	cm2	pole powierzchni przekroju	100	Silv
ZWICHRZENIE			Ay	32.100	cm2	pole powierzchni czymnej przy ścinaniu w kierunku Y	1	
	Szczegółowa		Az	21.300	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Z	131	Szczegółowa
			b:	19.470	cm4	moment bezwładności przy skręcaniu	1000	
			37	8358.110	cm4	moment bezwładności względem osi Y	1221	
WTBULZENIE Z			12	603.779	cand	moment bezwładności względem osi Z	181	
	(manufactor)		Wely	\$57.074	cmJ	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Y	1001	and the second s
	Ngeta obecz.		Weiz	80.504	cm3	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Z	181	Ngeca obiecz.
BEZHITATY			h	30.0	cm	wysokość przekroju	DO:	
Thanks (PT)			b	15.0	cm	szerokość przekroju	181	
			17	1,1	cm	grubošć półki	181	
			tw	0.7	cm	grubość środnika	181	
Vz/Viz=0.27 < 1.00 (53)	0 Parent		19	12.5	cm	promień bezwładności przekroju wzgl. osi Y	×	0 mm
	PORIOC							PORIOC

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/E</i> TYP ANALIZY: V	3- <i>03200</i> Weryfikacja prętów		
GRUPA: PRĘT: 1	PUNKT: 1	WSPÓŁRZĘ	EDNA: $x = 0.00 L = 0.00 m$
OBCIĄŻENIA: Decydujący przypad	ek obciążenia: 1 TEST		
MATERIAL: ST fd = 215.00 MPa	E = 205000.00	0 MPa	
PARAME h=30.0 cm b=15.0 cm tw=0.7 cm tf=1.1 cm	TRY PRZEKROJU: IPE 300 Ay=32.100 cm2 Iy=8356.110 cm4 Wely=557.074 cm3	Az=21.300 cm2 Iz=603.779 cm4 Welz=80.504 cm3	Ax=53.812 cm2 Ix=19.470 cm4
SIŁY WEWNĘTRZ KLASA PRZEKRO	ZNE I NOŚNOŚCI: JU = 1	V V	z = 72.63 kN rz = 265.61 kN
PARAMET	TRY ZWICHRZENIOWE:		
PARAMETRY WY	YBOCZENIOWE: Y:	względem osi Z	·
FORMUŁY WERY Vz/Vrz = 0.27 < 1.00	(FIKACYJNE: 0 (53)		

Profil poprawny!!!

PORÓWNANIE WYNIKÓW:

Nośności, warunki normowe	Robot	Książka
Analiza pręta w 3 punktach:		
Nośność belki jednokierunkowo zginanej Mry [kNm]	128.15	128.1
Warunek sprawdzający [wzór (52) PN-90/B-32000]	0.85	0.85
Analiza pręta w 2 punktach:		
Nośność obliczeniowa przekroju ścinanego Vrz [kN]	265.61	265.6
Warunek sprawdzający [wzór (53) PN-90/B-32000]	1.030	1.011

PRZYKŁAD WERYFIKACYJNY 5 - Zginana belka niezabezpieczona przed zwichrzeniem

Przykład zaczerpnięty z książki PRZYKŁADY OBLICZEŃ KONSTRUKCJI STALOWYCH Z.Boretti, W.Bogucki, S.Gajowniczek, W.Hryniewiecka

TYTUŁ:

Zginana belka wolno podparta niezabezpieczona przed zwichrzeniem (Przykład 3-16).

OPIS PROBLEMU:

Przeprowadzić obliczenia belki dwuteowej wykonanej z profilu IP 260 stanowiącej część toru jezdnego elektrowciągu. Belka ma rozpiętość 8.0 m i jest obciążona na poziomie pasa dolnego siłą P = 26.1 kN. Siła jest przyłożona w środku belki. Belka wykonano ze stali ST3S.

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta, wstępnie użyty zostanie gotowy zestaw parametrów, który następnie zostanie zmodyfikowany i zapisany pod nową nazwą. W tym celu należy w oknie DEFINICJE/PRĘTY wybrać z listy *Typ pręta* predefiniowany zestaw parametrów **BELKA**.

🗲 Definicje - PN-90/B-	-03200	
Pręty Grupy		
<u>N</u> umer: _ Dane podstawowe-	1	Nowy
Lista prętów:	1	
Na <u>z</u> wa:		Parametry
<u>G</u> rupa:	Typ pręta:	Belka 💌
ОК	Zapisz	Pomoc

W celu modyfikacji parametrów należy kliknąć w przycisk *Parametry*. Po otwarciu okna DEFINICJA PRĘTA – PARAMETRY wpisz nową nazwę BELKA1 w polu *Typ pręta*. W celu zdefiniowania punktu przyłożenia obciążenia na półce dolnej wybierz ikonę *Poziom obciążenia* a następnie w oknie dialogowym POZIOM OBCIĄŻENIA zaznacz ikonę ostatnią (5). Zamknij okno naciskając OK. Następnie otwórz okno TYP OBCIĄŻENIA klikając w ikonę o tej samej nazwie. Zaznacz 3 ikonę od góry (*siła skupiona w środku*) i kliknij OK. Następnie otwórz okno DEFINICJA PRĘTA – PARAMETRY DODATKOWE klikając w buton *Więcej*. Zdefiniuj wartość współczynnika rezerwy plastycznej na αpy = 1.07. Zamknij dialog a następnie zapamiętaj nowo zdefiniowany zestaw parametrów pręta 1 wciskając przycisk *Zapisz*.

W celu rozpoczęcia obliczeń należy przejść do okna dialogowego OBLICZENIA. W polu Weryfikacja prętów wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*.

🗲 Obliczenia - PN-90/B-03200	
Opcje weryfikacyjne	
Weryfikacja prętów: 1	Lista
O Weryfikacja grup:	Lista
O Wymiarowanie grup:	Lis <u>t</u> a
🗌 Opty <u>m</u> alizacja 📃 🔍)p <u>c</u> je
Obciążenia	Stan graniczny
Lista przypadków o <u>b</u> c.: 1	✓ Nośność
Selekcja przypadków obciążeniowych	<u>U</u> żytkowanie
OK Konfiguracja	Dbliczenia Pomoc

Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.). Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń.

1	PN-90/B-03200 - Weryfikacja prętów (SGN) 1								
	Rezultaty Komuni	ikaty						(<u>N</u> otka oblicz.)	Zamknij
	Pręt	Profil	Materiał	Lay	Laz	Wytęż.	Przypadek		Pomoc
	1	📧 IP 260	STAL	74.570	326.143	0.996	1 STA1		
								Analiza	

Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

WYNIKI - norma - PN-90/II-03200		WYNIKI - norma - PN-90/0-03200		
Pręt 1 Pręt 1 Purkt / Współrzędna: 2 / x Przkt / Współrzędna: 1 51/	= 0.50 L = 4.00 m	0K	Profi poprawny	
Wyniki uproszczone Wyniki szczegółowe		Zirimo Wyniki uproszczone Wyniki szczegółowe	Zom	0
SEC* Hg = 452,200 M/m May = 20,751 M/m May = 42,751 M/m KLASA PRZEKROUD = 1 WOMPCENIE ZWIDHPCENIE Ld = 8.00 m Lab. = 1,287 Ld = 1.287	V2 = -13.05 kN V2 = 23.05 kN V2 = 223.71 kN N2 = 50.73 kN N4 = 76.32 kN ^{rm} N4 = 76.52 kN ^{rm}	Symbol Waterdie Jeenvotte Operating Operating Size 47.700 end pole powierzchie zawier pole powierzchie zawier Szczeggibiesa Az 17.940 end pole powierzchie zawier pole powierzchie zawier Lic 37.800 end pole powierzchie zawier pole powierzchie zawierzchie zawierzchierzchie zawierzchie zawierzchi	I synthodu Peragent a 19 7260 19 727 Schanku w Keruniku V 19 728 Schanku W 19 72	0#43
	WABOCZENIE Z	In 5480.000 cm4 moment to zerokalności w trach za produktowa Iglia oblicz Int 207.000 cm4 moment to zerokalności w trach za produktarki wy Velez 50.756 cm3 elistryczny wsiaźnik wy wsiaźnik wy h 28.5 cm wsiaźnik wy wsiaźnik wy	zgłężem osi Y zgłężeni osi Y trzymałości przekroju wzgł. osi Y Ngłka obi trzymałości przekroju wzgł. osi Z	icz.
My/(R,*My) = 52.20/(0.540*97.15) = 0.996 < 1.000 (52)		b 11.3 cm szerokość przekroju tf 1.4 cm grubość półki ta: 0.7 cm prubość półki		
Vz/Viz = 0.058 < 1.000 (53)		Pomoc 10.7 cm grubosc sroomka ry 10.7 cm promień bezwładności pr	zekroju wzgl. osi Y Pomoc	_
OBLI	CZENIA KON	STRUKCJI STALO	WYCH	
NORMA: <i>PN-90/B-0320</i> TYP ANALIZY: Weryfi	0 kacja prętów			
GRUPA: PRĘT: 1	PUNKT: 2	WSPÓŁRZĘDNA	: $x = 0.50 L = 4.00 m$	
OBCIĄŻENIA: Decydujący przypadek obc	iążenia: 1 STA1			
MATERIAL: STAL fd = 215.00 MPa	E = 205000.00 MPa			
PARAMETRY h=26.0 cm	PRZEKROJU: IP 2	260		
b=11.3 cm	Ay=31.866 cm2	Az=17.940 cm2	Ax=47.700 cm2	
tw=0.7 cm	Iy=5490.000 cm4	Iz=287.000 cm4	Ix=31.000 cm4	
tf=1.4 cm	Wely=422.308 cm3	Welz=50.796 cm3		
SIŁY WEWNĘTRZNE I	NOŚNOŚCI: My = 52.20 kN*m Mru = 97.15 kN*m			
	$VII y = 97.13 \text{ KIN}^{\circ}\text{M}$ Mrv. $v = 97.15 \text{ kN}^{\circ}\text{m}$		$V_7 = -13.05 \text{ kN}$	
KLASA PRZEKROJU = 1	₩ Y Y 77.15 KIV III		Vrz = 223.71 kN	
PARAMETR	Y ZWICHRZENIOW	 VE:		
z = -1.000	La L = 1.297	Nw = 2160.95 kN	fi L = 0.540	
Ld = 8.00 m	Nz = 90.73 kN	Mcr = 76.32 kN*m		

względem osi Y: _____

FORMUŁY WERYFIKACYJNE: My/(fiL*Mry) = 52.20/(0.540*97.15) = 0.996 < 1.000 (52) Vz/Vrz = 0.058 < 1.000 (53)

------____

Profil poprawny!!!

PORÓWNANIE WYNIKÓW:

Nośności, warunki normowe	Robot	Książka
Siła krytyczna przy wyboczeniu giętnym Nz [kN]	90.73	91
Siła krytyczna przy wyboczeniu skrętnym Nw [kN]	2160.95	2170
Moment krytyczny przy zwichrzeniu Mcr [kNm] wg wzoru (Z1-9)	76.32	76.40
Współczynnik zwichrzeniowy φ_{L} wg paragrafu 4.5.4	0.540	0.538
Nośność belki jednokierunkowo zginanej Mry [kNm]	97.15	97.10
Warunek sprawdzający [wzór (52) PN-90/B-32000]	0.996	1.000

PRZYKŁAD WERYFIKACYJNY 6 - Ściskanie ze zginaniem słupa o przekroju dwuteowym

Przykład zaczerpnięty z PODSTAWY PROJEKTOWANIA KONSTRUKCJI METALOWYCH autorstwa Jana Żmudy

TYTUŁ:

Ściskanie ze zginaniem słupa o przekroju dwuteowym (Przykład 6.1).

OPIS PROBLEMU:

Słup o przekroju IPN 340 ma wysokość 3.6 m. Jego końce są podparte przegubowo nieprzesuwnie. W połowie wysokości słup dodatkowo usztywniono w kierunku prostopadłym do płaszczyzny zginania. Słup obciążono siłą osiową P = 800 kN i momentem M = 160 kNm działającym na górnym końcu słupa w płaszczyźnie większej sztywności słupa. Przyjmując stal St3SY, sprawdzić nośność przekroju.

ROZWIĄZANIE:

W celu zdefiniowania parametrów dla analizowanego pręta, wstępnie użyty zostanie gotowy zestaw parametrów, który następnie zostanie zmodyfikowany i zapisany pod nową nazwą. W tym celu należy w oknie DEFINICJE/PRĘTY wybrać z listy *Typ pręta* predefiniowany zestaw parametrów **SŁUP**.

Definicje - PN-90/B-03200						
Pręty Grupy						
<u>N</u> umer: Dane podstawowe-	1	Nowy				
Lista prętów:	1					
Na <u>z</u> wa:		Parametry				
<u>G</u> rupa:	▼ <u>T</u> yp pręta: Sł	up 🔽				
OK	Zapisz	Pomoc				

W celu modyfikacji parametrów należy kliknąć w przycisk *Parametry*. Po otwarciu okna DEFINICJA PRĘTA – PARAMETRY wpisz nowa nazwę SŁUP1 w polu *Typ pręta*. W celu zdefiniowania dodatkowego stężenia na wyboczenie w kierunku Z kliknij w ikonę *Współczynnik długości wyboczeniowej – mi z*. W oknie SCHEMATY WYBOCZENIOWE dwukrotnie kliknij w ostatnią ikonę. Po otwarciu okna STĘŻENIA WEWNĘTRZNE wpisz w pole *Współrzędne istniejących usztywnień* relatywną współrzędną **0.5**. W polu *Współczynniki wyboczeniowe odcinków składowych* automatycznie zostaną wygenerowane dwa współczynniki dla nowo powstałych dwóch elementów słupa. Zamknij okno klikając OK. Następnie otwórz okno DEFINICJA PRĘTA – PARAMETRY DODATKOWE klikając w buton *Więcej*. Wybierz ikonę *Współczynnik Beta – kierunek* Y w celu zdefiniowania sposobu obliczeń współczynnika zależnego od rozkładu momentów zginających na belce. W oknie WSPÓŁCZYNNIK BETA wybierz ikonę pierwszą (*Węzły nieprzesuwne + momenty podporowe*) i zatwierdź naciskając OK.

Następnie w oknie DEFINICJA PRĘTA – PARAMETRY DODATKOWE zdefiniuj wartość współczynnika rezerwy plastycznej na αpy = 1.07. Zamknij dialog a następnie zapamiętaj nowo zdefiniowany zestaw parametrów pręta 1 wciskając przycisk *Zapisz*.

ቻ Definicja pręta - parametry dodatkowe 🛛 🛛 🔀	🎏 Definicja pręta - parametry - PN-90/B-03200	×
Parametry obciążeniowe OK Wsp. Beta: kier Y: Uwoględniaj wpływ drugoządnego Uwoględniaj wpływ grugoządnego Osłabienie elementu otworami na łączniki Pole otworów w półkach: Aoy = 0.000 cm2 Pole otworów w śródniku: Aoz = 0.000 cm2	Lyp pręta: Słup1 Wyboczenie względem osi Y Wyboczenie względem osi Z Długość pręta ly: Długość pręta lz: realna 1.000 mgożnik 1.000 Wsp. długości wyboczeniowej Wsp. długości wyboczeniowej mj y. 1.000 II mj z. II.000 II	Zapisz Zamknij
Utwoy powejszone w stele ściskanej Pręty pojedynoze zanocowane mimośrodowo Rołę części przygowej A1 0000 cm2 Połgozenie na jeden łącznik Współczynnik rezerwy plastycznej C autonałyczny alfa p 1070	Parametr imperfekcji ny: automatygzny użytkownika 1,200 Wyboczenie giętno-skrętne profili monosymetrycznych K scłatkowniki oddane wużąrzaniu	Użytkowanie Więcej Przekrój złożony
uzytkownika: alfa pz 1.000 Stałeczność lokalna przekrojów klasy 4 uzytkownika uzytkownika uzytkownika Wsp. niestałeczności fi py 1000 Wsp. niestałeczności fi py 1.000	Parametry zwichrzeniowe Typ zwichrzenia: Lyp obciążenia: Poziom obciążenia: Końce pręta przy skręcaniu: Stregubowe Skręcaniu: Stregubowe Skręcaniu: Stregubowe Skręcaniu: Stregubowe Skręcaniu: Stregubowe	
Wytrzymałość obliczeniowa środnika falstego Zmodyfikowana wartość: fdw 215.0 MPa Profile ażurowe Zasięg strefy przypodporowej lp = 0.00 m Dodatkowe warunki dla rur okrągłych Jednokierunkowe zginanie rur Pomoc	niestałeczności: 40 ♥ Bełka o przekroju dłwukowym usztywniona bocznym stężeniem podłużnym wymuszającym położenie środka obrotu ₹↓ wysółrzędna płaszczyzny stężenia: zc 0.000 x h Współrzejna ki do obliczeń Mcr (Tablica Z1-2): automatygzne użytkownika A1 1.000 A2 1.000 B 1.000	Pomoc

W celu rozpoczęcia obliczeń przejdź na zakładkę OBLICZENIA. W polu Weryfikacja prętów wpisz numer analizowanego pręta 1. W polu *Lista przypadków obciążeniowych* wpisz numer przypadku 1. Ponieważ obliczenia stanu granicznego użytkowania nie będą prowadzone wyłącz opcje *Stan graniczny – Użytkowanie*. Uruchom obliczenia wciskając klawisz *Obliczenia*.

💋 Obliczenia - PN-90/B-032	00 📃 🗆 🗙
Opcje weryfikacyjne	
Weryfikacja prętów:	1 Lista
O Wery <u>f</u> ikacja grup:	Lista
🔿 Wymiarowanie grup:	Lista
🔲 Opty <u>m</u> alizacja	Op <u>cj</u> e
Obciążenia	Stan graniczny
Lista przypadków o <u>b</u> c.: 1	✓ Nośność
Selekcja przypadków obcia	zżeniowych
OK Konfigu	racja Obliczenia Pomoc

Okno rezultatów skróconych zawiera zestaw najistotniejszych wyników dla analizowanych prętów (np. współczynnik wytężenia, decydujące przypadki obciążeniowe itp.). Kliknięcie w linie z wynikami dla pręta 1 spowoduje otwarcie okna WYNIKI w którym użytkownik może znaleźć wszystkie szczegółowe informacje na temat przyjętych parametrów i przeprowadzonych obliczeń.

FPN-90/B-03200	- V	Yeryfikacja pi	ętów (SGN) 1						
Rezultaty Komuni	katy	/						 <u>N</u> otka oblicz.	Zamknij
Pręt		Profil	Materiał	Lay	Laz	Wytęż.	Przypadek		Pomoc
1	8	IPN 340	STAL St3S-20	26.774	64.600	1.242	1 TEST		
								Analiza	

Poniżej zamieszczono widok okna WYNIKI z aktywnymi zakładkami *Wyniki uproszczone* i *Wyniki szczegółowe*. Dodatkowo prezentowana jest notka obliczeniowa będąca dokładnym odzwierciedleniem rezultatów prezentowanych na zakładce *Wyniki uproszczone*.

WYNIKI:

🗲 WYNIKI - norma - PN-90/II-03200 📃 📧 🔀 WYNIKI - norma - PN				93200			
Opt Duto Prof. 1 Prvk1/Virp/itxpdrax 2/x + 100 L + 360 m Prvk1/Virp/itxpdrax 2/x + 100 L + 360 m	<u>ОК</u>	IPN 340	Auto	Pięt 1 Punkt / Wa Przypadek	pôtrzydna: 3 / x = 1.00 L = 3.60 m obciązenia: 1 TEST	0 9	
Wyniki uproszczone Wyniki szczegółowe	Zaima	Wyniki uproszc	zone Wyniki szo	zegółowe:			Zaime
SRY N= 000 00 M		Symbol	Natolé	Johnstia	Onio svetkolu Parament		
NHC = 1776.02 kN Hry = 202.09 kN'm Mry = 202.09 kN'm Vz = -44.44 kN				Che	rakterystyki przekroju: IPN 340	ī	
KLASA PRZEKROJU = 1 By'Mymax = -88.00 kN'm Viz_n = 440.33 kN	Şity	Ax	06.635	cm2	pole powierzchni przekroju	-	Sity
ZWICHRZENIE	A second second	Ay	50.142	cm2	pole powierzchni czymnej przy ścinaniu w kierunku Y		Record to an
	Szczegorowa	Az	41.480	cm2	pole powierzchni czynnej przy ścinaniu w kierunku Z		Szczegorowa
		b.	92.900	cm4	moment bezwładności przy skręcaniu		
AMOUNTAINE V AMOUNTAINE 7		ly .	15862.500	cm4	moment bezwładności względem osi Y		
WIBULZENIE 2 WIBULZENIE 2 UNBULZENIE 2 UNBULZENIE 2 UNBULZENIE 2 UNBULZENIE 2		12	672.632	cm4	inoment bezwładności względem osi Z		
Lwg = 3.60 m Nery = 24451.74 kN Lwg = 1.80 m Nerg = 4200.36 kN	Notice address	Wely	921.324	cmJ	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Y		Notice address
Lambda y = 26.774 fi y = 0.995 Lambda z = 64.600 fi z = 0.012	Ngola obecz.	Welz	98.194	cm3	elastyczny wskaźnik wytrzynałości przekroju wzgl. osi Z		Ngora.obecz.
BEZH TATY		h	34.0	cm	wysokość przekroju		
N/liftNic] = 0.555 < 1.000 (39); N/lis/Nic)=By/Mymax/IIL*Miy] = 0.453 = 0.435 = 0.838 < 1.000 · Delta y = 0.977 (58)		b	13.7	cm	szerokość przekroju		
N/Nrc+My/JR_My) = 0.450 + 0.732 = 1.242 > 1.000 (54)		11	1.8	cm.	grubošć półki		
		tw	1.2	cm	grubošć środnika		
Vz/Viz_n = 0.101 < 1.000 (56)		19	13.4	cm	promień bezwładności przekroju wzgl. osi Y		
	Portico						Portico

OBLICZENIA KONSTRUKCJI STALOWYCH

NORMA: <i>PN-90/B-032</i> TYP ANALIZY: Weryf	90 ĭkacja prętów		
GRUPA: PRĘT: 1	PUNKT: 3	WSPÓŁRZĘDN	MA: $x = 1.00 L = 3.60 m$
OBCIĄŻENIA: Decydujący przypadek ob	ciążenia: 1 TEST		
MATERIAŁ: STAL S fd = 205.00 MPa	t3S-205 E = 205000.00 MPa		
PARAMETRY	Y PRZEKROJU: IPN 34	40	
b=13.7 cm tw=1.2 cm tf=1.8 cm	Ay=50.142 cm2 Iy=15662.500 cm4 Wely=921.324 cm3	Az=41.480 cm2 Iz=672.632 cm4 Welz=98.194 cm3	Ax=86.635 cm2 Ix=92.900 cm4
SIŁY WEWNĘTRZNE N = 800.00 kN Nrc = 1776.02 kN KLASA PRZEKROJU =	I NOŚNOŚCI: My = -160.00 kN*m Mry = 202.09 kN*m Mry_v = 202.09 kN*m 1 By*Mymax = -88.00 kN*	*m	Vz = -44.44 kN Vrz_n = 440.33 kN
PARAMETRY Z	WICHRZENIOWE:		
PARAMETRY WYBOC I_{10} względem osi Y: Ly = 3.60 m Lwy = 3.60 m Lambda y = 26.774	ZENIOWE: Lambda_y = 0.310 Ncr y = 24451.74 kN fi y = 0.995	względem osi Z: Lz = 3.60 m Lwz = 1.80 m Lambda $z = 64.600$	Lambda_z = 0.748 Ncr z = 4200.36 kN fi z = 0.812
FORMUŁY WERYFIK. N/(fi*Nrc) = 0.555 < 1.00 N/Nrc+My/(fiL*Mry) = 0 Vz/Vrz_n = 0.101 < 1.000	ACYJNE: 0(39); N/(fiy*Nrc)+By*My .450 + 0.792 = 1.242 > 1.00 0 (56)	/max/(fiL*Mry) = 0.888 < 1. 00 (54)	000 - Delta y = 0.977 (58)
Profil niepoprawny!!	!		

Konieczne jest ponowne przeliczenie belki np. z nowym mocniejszym profilem.

PORÓWNANIE WYNIKÓW:

Nośności, warunki normowe	Robot	Książka
1. Nośność obliczeniowa pręta przy ściskaniu N _{Rc} [kN]	1776.02	1775
2. Współczynnik wyboczeniowy φ _v wzgl. osi y-y	0.995	0.996
3. Nośność obliczeniowa pręta przy zginaniu M _{Ry} [kN]	202.09	202.5
4. Warunek sprawdzający [wzór (58) PN-90/B-32000]	0.888	0.88
5. Warunek sprawdzający [wzór (54) PN-90/B-32000]	1.242	1.24

Autodesk Robot Structural Analysis - Przykłady weryfikacyjne dla Polskich Norm

Beton - Zbrojenie Słupów wg PN-EN 03264:2002

PRZYKŁAD WERYFIKACYJNY 1 - Słup mimośrodowo ściskany l

Przykład na podstawie:

[1] PN-EN 03264: 2002 "Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie"

[2] Sekcja Konstrukcji Betonowych KLIW PAN: "Podstawy projektowania konstrukcji żelbetowych i sprężonych", Wyd. I, Wrocław 2006, Przykład 10.1, str. 565.

TYTUŁ:

Słup mimośrodowo ściskany - moment zginający zadany w dolnym końcu słupa.

OPIS ZADANIA:

Dla słupa AB ramy (*Rys. 1.1*) założono symetryczne zbrojenie prętami ϕ 20 (*Rys 1.2*). Przeanalizowano przypadek, w którym autorzy pracy [2] obliczyli wpływ smukłości słupa na moment wymiarujący.

Dokonano obliczeń zbrojenia przy pomocy programu Robot, a następnie po wyjaśnieniu przyczyn ewentualnych różnic, doprowadzono zbrojenie do formy jak w [2].

Następnie dokonano porównania obliczeń wpływu nośności wykonanych przy użyciu programu Robot z wynikami przedstawionymi w [2], a także, dla sprawdzenia poprawności pracy [2], z wynikami obliczeń "ręcznych".

Rys.1.1 Model ramy ze słupem A-B podlegającym wymiarowaniu

Rys.1.2 Przekrój słupa z założonym zbrojeniem wg [2] (pręty 10¢20).

DANE:				
1.	Materiały			
	Beton: Zbrojenie: Wilgotność:	B37 34GS RH=50)%	f _{cd} =20,00 (MPa) f _{yd} =350 (MPa)
2.	Geometria			
	Długość słupa:		I _{col} = 6,40	(m)
	Współczynnik długości wybocze	eniowej:	β =2	
	Rama o węzłach przesuwnych			
	Wymiary przekroju:		0,45 x 0,50	(m)
	Grubość otulenia:		c=35	(mm)
	Wysokość użytkowa		d ₁ =0,465	(m)
	Średnica prętów zbrojenia:		φ=20	(mm)
	llość kondygnacji:		n=1	
	Słup prefabrykowany			
	Wymiarowany środkowy przekro	ój słupa		
3.	Obciążenia (obliczeniowe)			
	Siła podłużna całkowita:		N _{Ed} =776	(kN)
	Moment całkowity:		M _{Ed.A} =168	(kNm)
	Stosunek obciążeń krótkotrwały	ch do d	$\frac{N}{2}$ ługotrwałych: $\frac{N}{2}$	$\frac{V_{Sd,lt}}{N_{Sd}} = 0,815$
	Współczynnik pełzania (beton o	bciążon	o w wieku 28dn	ii): $\varphi(\infty, t_{o}) = 2,3$

UWAGI DO OBLICZEŃ:

Poniżej przedstawione zostały najbardziej kluczowe kroki, na jakie należy zwrócić uwagę podczas definicji zadania.

W oknie dialogowym *Model wyboczeniowy* zdefiniować współczynnik długości wyboczeniowej β =2 oraz ramę, jako przesuwną względem kierunku Y (*Rys. 1.3*).

<u>**UWAGA**</u>: Parametry wyboczeniowe ustawiane w ramce KIERUNEK Y dotyczą tego kierunku, na którym działa moment M_y (moment wokół osi y przekroju), a więc wyboczenia powodującego zwiększenie momentu M_y . W tym przypadku nastąpi wyboczenie słupa z płaszczyzny XY.

Rys.1.3 Definicja modelu wyboczeniowego słupa.

W oknie dialogowym *Obciążenia* podać obciążenia: siłę osiową ściskającą *N* oraz moment zginający w dolnym węźle słupa *M_y* (*Rys. 1.4*).

Wpisać współczynnik wyrażający stosunek obciążeń długotrwałych do całkowitych $\frac{N_{Sd,lt}}{N_{Sd}} = 0,815$.

								·····,	,,		•
1_0BL.1	obliczeniowe	1	776.000	0.000	168.000	0.000	0.000	0.000	0.000	0.815	1.00
*											

Ponieważ analizowany przykład dotyczy ramy płaskiej, w oknie *Opcje Obliczeniowe/Ogólne* należy zaznaczyć opcję: *Wymiarowanie na jednokierunkowe zginanie* – kierunek *M_y* (*Rys. 1.5*). W przeciwnym wypadku program dokonałby dodania mimośrodu niezamierzonego w kierunku prostopadłym do płaszczyzny ramy.

$\overline{}$	Wymiarowanie na j	ednokierunkowe zginanie
	💿 Kierunek My	🔘 Kierunek Mz

W oknie dialogowym *Parametry Zbrojenia/Pręty główne* należy ustawić średnicę prętów narożnych oraz pośrednich: 20mm (*Rys. 1.6*). Pozwoli to na uzyskanie wyniku obliczeń jak najbardziej zbliżonego do [2].

Pręty główne Pręty poprzeczne
Pręty narożne
Średnica: 20,0 💌 mm
Maksymalna ilość prętów w wiązce
1 💌
Pręty pośrednie
🔽 Jednakowe średnice
Średnica: 20,0 💌 mm
Maksymalna ilość prętów w wiązce
1 💌

Rys.1.6 Definiowanie średnic prętów zbrojenia słupa.

WYNIKI OBLICZEŃ ZBROJENIA:

Rys.1.7. Zbrojenie wygenerowane automatycznie przez program (pręty główne 8\u00e920, pręty konstrukcyjne 2\u00e912).

Program wygenerował zbrojenie mniejsze od tego założonego w [2]. Jak pokazuje weryfikacja nośności przeprowadzona programem dla obu układów zbrojenia, zbrojenie założone w [2] prowadzi do uzyskania współczynnika nośności na poziomie 1.29 (29 % zapasu nośności), podczas gdy zbrojenie obliczone w programie pozwala na osiągnięcie bardziej optymalnego współczynnika nośności na poziomie 1.09 (9% zapasu nośności).

Generacja prętów konstrukcyjnych rozmieszczonych wzdłuż dłuższych boków wynika z wymogów normy [1] (punkt 9.5.1.2, Rys. 76). Należy pamiętać, że pręty te nie są uwzględniane w obliczeniach nośności przekroju. Opcja generowania prętów konstrukcyjnych może być wyłączona na zakładce *Pręty Główne* w oknie dialogowym *Parametry zbrojenia*. Jeśli opcja jest wyłączona, wszystkie generowane pręty są prętami głównymi ("nośnymi").

Celem weryfikacji wyników obliczeń zmodyfikowano zbrojenie do postaci jak w [2] (patrz Rys. 1.2).

Wzory	Jednostki	Wyniki [2]	Wyniki obliczeń "ręcznych"	Wyniki obliczeń programu Robot
$I_c = \frac{bh^3}{12}$	(m ⁴)	0,00785	0,0046875	0,0046875
$I_s = A_s \left(\frac{h}{2} - d_1\right)^2$	(m ⁴)	0,000145	0,000145	0,000145
$l_0 = \beta l_{col}$	(m)	12,8	12,8	12,8
$\lambda = rac{l_0}{i}$	(-)	88,9 słup smukły	88,7 słup smukły	88,7 słup smukły
$e_e = rac{M_{Ed}}{N_{Ed}}$	(cm)	21,64	21,64	21,64

WYNIKI OBLICZEŃ WPŁYWU WYBOCZENIA:

$e_{a} = \max \begin{cases} \left(1 + \frac{1}{n}\right) \frac{1}{600} l_{col} \\ \frac{h}{30} \\ 0,02m \end{cases}$	(cm)	2,13	2,13	2,13
$e_0 = e_a + e_e$	(cm)	23,7	23,78	23,78
$\frac{e_0}{h} = \max\begin{cases} \frac{e_0}{h} \\ 0.5 - 0.01(\frac{l_0}{h} + f_{cd}) \\ 0.05 \end{cases}$	(-)	0,474	0,4760	0,4757
$k_{lt} = 1 + 0.5 \frac{N_{Sd.lt}}{N_{Sd}} \varphi(\infty, t_o)$	(-)	1,938	1,9373	1,9375
$N_{crit} = \frac{9}{l_0^2} \left[\frac{E_{cm}I_c}{2k_{lt}} \left(\frac{0.11}{0.1 + \frac{e_0}{h}} + 0.1 \right) + E_s I_s \right]$	(kN)	2630 (błąd obliczeń [3])	2229,08	2229,08
$\eta = \frac{1}{1 - \frac{N_{Sd}}{N_{crit}}}$	(-)	1,4186	1,5340	1,5340
$e_{tot} = \eta e_0$	(cm)	33,6	36,5	36,5
$M_{totd} = N_{sd} e_{tot}$	(kNm)	260,7	283,1	283,1

Tabela 1.1 Zestawienie wyników

KOŃCOWA WERYFIKACJA:

UWAGA: porównanie wyników obliczeń zbrojenia dotyczy zbrojenia automatycznie wygenerowanego przez program, natomiast porównanie momentów wymiarujących dotyczy obliczeń po modyfikacji zbrojenia do stanu jak w przykładzie referencyjnym.

Wielkość	[2]	Robot		
A_s	$31,42 \text{ cm}^2$	$25,13 \text{ cm}^{2*}$		
(Rd/Sd)	(1,29)	(1,09)		
M _{tot}	260,7 kNm	283,1 kNm**		

WNIOSKI:

*Program automatycznie wygenerował inne zbrojenie niż zakładane w [2], co wynika z poszukiwania najbardziej optymalnego rozwiązania. Aby umożliwić weryfikację wyników obliczeń, można poprzez wprowadzenie ręcznych modyfikacji układu prętów doprowadzić do układu prętów jak w [2].

**Dokonano porównania obliczeń wykonanych programem Robot z wynikami zamieszczonymi w pracy [2]. W związku z różnicami wyników dokonano "ręcznych" obliczeń sprawdzających, które wskazują na istnienie pewnych błędów rachunkowych występujących w pracy [2] (np. błąd obliczeń siły krytycznej). Różnice pomiędzy obliczeniami "ręcznymi", a tymi wykonanymi przez program są pomijalnie małe, co dowodzi poprawności obliczeń w programie Robot.

PRZYKŁAD WERYFIKACYJNY 2 - Słup mimośrodowo ściskany II

Przykład na podstawie:

[1] PN-EN 03264: 2002 "Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie"

[3] A. Łapko, B.C. Jensen: "Podstawy projektowania i algorytmy obliczeń konstrukcji żelbetowych ", Wyd. I, 2005 r., Arkady, Przykład 11, str. 183.

TYTUŁ:

Słup mimośrodowo ściskany o węzłach przesuwnych.

OPIS ZADANIA:

Obliczono zbrojenie słupa piętrowej monolitycznej ramy o węzłach przesuwnych w przekroju górnym. Rozkład sił wewnętrznych w ramie przyjęto jak na *Rys. 2.1*. Uwzględniono przesuwność ramy oraz wpływy smukłości.

Dokonano obliczeń zbrojenia przy pomocy programu Robot, a następnie po wyjaśnieniu przyczyn ewentualnych różnic, doprowadzono zbrojenie do formy jak w [3].

Następnie dokonano porównania obliczeń wpływu nośności wykonanych przy użyciu programu Robot z wynikami przedstawionymi w [3], a także, dla sprawdzenia poprawności pracy [3], z wynikami obliczeń "ręcznych".

Rys. 2.1. Model ramy wg [3].

DANE:

1.	Materiały Beton: Zbrojenie: Wilgotność:	B20 A-III RH=5	0%		fcd = 10,60 (MPa) f _{yd} = 350 (MPa)
2.	Geometria Długość słupa:	I _{col} =	6,000	(m)	
	Współczynnik długości wyboczo Rama o węzłach przesuwnych	eniowej	: β = 1,10	6	
	Wymiary przekroju:	0,30 x	0,40	(m)	
	Grubość otulenia:	c=50		(mm)	
	llość kondygnacji: Wymiarowany górny przekrój sł	n=1 lupa.			

3. Obciążenia (obliczeniowe)

Siła podłużna całkowita:	N _{Sd} =	270	(kN)
Moment całkowity:	M_{Sd} =	90	(kNm)

Stosunek obciążeń krótkotrwałych do długotrwałych: $\frac{N_d}{N} = 1$

UWAGI DO OBLICZEŃ:

Poniżej przedstawione zostały najbardziej kluczowe kroki, na jakie należy zwrócić uwagę podczas definicji zadania.

W oknie dialogowym *Model wyboczeniowy* zdefiniować współczynnik długości wyboczeniowej β =1,106 oraz ramę jako przesuwną względem kierunku Y *(Rys. 2.2)*.

Rys.2.2 Definicja modelu wyboczeniowego słupa.

W oknie dialogowym *Obciążenia* podać obciążenia: siłę osiową ściskającą *N* oraz moment zginający w górnym przekroju słupa *My (Rys. 2.3)*.

Wpisać współczynnik obciążeń długotrwałych do krótkotrwałych $\frac{N_d}{N} = 1$.

Lp.	Przypadek	Natura	Grupa	N (kN)	Myg (kN*m)	Myd (kN*m)	My (kN*m)	Mzg (kN*m)	Mzd (kN*m)	Mz (kN*m)	Nd/N	Y
1	OBL.1	obliczeniowe	1	270,00	90,00	0,00	54,00	0,00	0,00	0,00	1,00	1,00
*												

Rys.2.3 Tabela z obciążeniami przypadającymi na słup.

Ponieważ analizowany przykład dotyczy ramy płaskiej, w oknie *Opcje Obliczeniowe/Ogólne* należy zaznaczyć opcję: *Wymiarowanie na jednokierunkowe zginanie* – kierunek *M_y*. W przeciwnym wypadku program dokonałby dodania mimośrodu niezamierzonego w kierunku prostopadłym do płaszczyzny ramy (*Rys. 2.4*).

Wymiarowanie na jednokierunkowe zginanie
 Kierunek My
 Kierunek Mz

Rys.2.4 Definicja wymiarowania na zginanie jednokierunkowe słupa.

WYNIKI OBLICZEŃ ZBROJENIA:

Program wygenerował zbrojenie różne od założonego przez autorów [3] (por. *Rys. 2.5. i 2.6.*). Rozbieżności rozwiązania wynikają z faktu, że program wymiarując przekrój zakłada zbrojenie symetryczne.

Celem porównania wyników obliczeń wpływu wyboczenia zmodyfikowano zbrojenie do postaci jak w [3], a następnie uruchomiono weryfikację (Analiza/Weryfikacja).

Rys.2.5. Zbrojenie wygenerowane automatycznie przez program (pręty 8\u00f614).

Rys.2.6. Zbrojenie podane w [3]. Pręty 3\u00f620 stanowią zbrojenie rozciągane, pręty 2\u00f612 zbrojenie ściskane.

WYNIKI OBLICZEŃ WPŁYWU WYBOCZENIA:

Wartość	Jednostka	Wyniki podane w [3]	Wyniki obliczeń programu Robot
I_c	(m ⁴) 0,0016		0,0016
k_{lt}	(-)	2,25	2,25
l_0	(m)	6,64	6,64
		16,7	57,47
λ	(-)	$(\lambda = \frac{l_0}{h})$	$(\lambda = \frac{l_0}{i})$
		słup smukły	słup smukły

e _e	(cm)	33,3	33,3
e _a	(cm)	1,33 (w [3] niepoprawnie skorzystano ze wzoru na e_a - użyto wzoru dla ram o węzłach nieprzesuwnych)	2,0
e_0	(cm)	34,6	35,3
e_0/h	(-)	0,875	0,883
N _{crit}	(kN)	1550,0 (obliczone na podstawie zakładanego stopnia zbrojenia)	1514,21
η	(-)	1,211	1,217
ρ	ρ (%) 1,1		0,97
e _{tot}	(cm)	41,9	43,0

Tabela 2.1 Zestawienie wyników.

KOŃCOWA WERYFIKACJA:

UWAGA: porównanie wyników obliczeń zbrojenia dotyczy zbrojenia automatycznie wygenerowanego przez program, natomiast porównanie momentów wymiarujących dotyczy obliczeń po modyfikacji zbrojenia do stanu jak w przykładzie referencyjnym.

Wielkość	[2]	Robot
A _s (Rd/Sd)	$11,69 \text{ cm}^2$	$12,32 \text{ cm}^2 \text{*}$
M _{tot}	113,13 kNm	116,10 kNm **

WNIOSKI:

Niniejszy przykład ilustruje algorytm obliczeń wpływu smukłości na momenty wymiarujące w słupach żelbetowych.

*Z uwagi na założenia symetrycznego zbrojenia program Robot wygenerował inne zbrojenie niż obliczone w [3]. Po obliczeniach zbrojenia dokonano ręcznej modyfikacji zbrojenia oraz przeprowadzono weryfikację wpływu smukłości.

**Różnica pomiędzy mimośrodem całkowitym obliczonym w [3], a tym obliczonym przez program wynika z zastosowania w pracy [3] założonego (proces iteracji) stopnia zbrojenia do obliczeń siły krytycznej, podczas gdy w programie Robot obliczenia siły krytycznej (a więc i mimośrodu całkowitego) opierają się na rzeczywistych powierzchniach zbrojenia (co prowadzi do większej dokładności obliczeń). Ponadto, w pracy [3] obliczono niepoprawnie mimośród przypadkowy, podczas gdy program Robot używa poprawnego wzoru na mimośród przypadkowy dla słupów w układach o węzłach przesuwnych.

PRZYKŁAD WERYFIKACYJNY 3 - Słup mimośrodowo ściskany III

Przykład na podstawie:

[1] PN-EN 03264: 2002 "Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie"

[3] A. Łapko, B.C. Jensen: "Podstawy projektowania i algorytmy obliczeń konstrukcji żelbetowych", Wyd. I, 2005 r., Arkady, Przykład 12, str. 187.

TYTUŁ:

Słup mimośrodowo ściskany bez uwzględnienia wpływu wyboczenia.

OPIS ZADANIA:

Obliczono zbrojenie słupa jak na *Rys. 3.1.* w przekroju zamocowania w stopie fundamentowej. Pominięto wpływ smukłości na wymiarowanie.

Dokonano obliczeń zbrojenia przy pomocy programu Robot.

Rys. 3.1. Model ramy wg [3].

DANE:

Materiały			
Beton:	B25		f _{cd} = 13,30 (MPa)
Zbrojenie:	A-I		f _{yd} = 210 (MPa)
Geometria			
Długość słupa:		I _{col} =10,000	(m)
Współczynnik długości wyboc	zeniowe	ej:β=1	
Rama o węzłach nieprzesuwr	nych		
Wymiary przekroju:	0,30 x	0,40	(m)
Grubość otulenia:	c=40		(mm)
llość kondygnacji:	n=1		
Wymiarowany dolny przekrój s	słupa.		
Obciążenia (obliczeniowe)			
Siła podłużna całkowita:	N _{Sd} =	1400	(kN)
Moment całkowity:	M _{Sd} =	60	(kNm)
	Materiały Beton: Zbrojenie: Geometria Długość słupa: Współczynnik długości wybod Rama o węzłach nieprzesuwr Wymiary przekroju: Grubość otulenia: Ilość kondygnacji: Wymiarowany dolny przekrój s Obciążenia (obliczeniowe) Siła podłużna całkowita: Moment całkowity:	Materiały Beton:B25 Zbrojenie:B25 A-IZbrojenie:A-IGeometria Długość słupa:A-IWspółczynnik długości wyboczeniowe Rama o węzłach nieprzesuwnychWymiary przekroju:Wymiary przekroju:0,30 xGrubość otulenia:c=40Ilość kondygnacji:n=1Wymiarowany dolny przekrój słupa.Obciążenia (obliczeniowe)Siła podłużna całkowita:N _{Sd} =Moment całkowity:M _{Sd} =	Materiały Beton:B25 A-IZbrojenie:A-IGeometria Długość słupa: $I_{col} = 10,000$ Współczynnik długości wyboczeniowej: $\beta=1$ Rama o węzłach nieprzesuwych $I_{col} = 10,000$ Wymiary przekroju: $0,30 \times 0,40$ Grubość otulenia: $c=40$ Ilość kondygnacji: $n=1$ Wymiarowany dolny przekrój słupa.Obciążenia (obliczeniowe)Siła podłużna całkowita: $N_{Sd} = 1400$ Moment całkowity: $M_{Sd} = 60$

UWAGI DO OBLICZEŃ:

Poniżej przedstawione zostały najbardziej kluczowe kroki, na jakie należy zwrócić uwagę podczas definicji zadania.

W oknie dialogowym *Model wyboczeniowy* wyłączyć możliwość uwzględniania wyboczenia, po to aby zagwarantować wymiarowanie przekroju bez wpływu wyboczenia, zgodnie z tokiem postępowania autora [3] *(Rys. 3.2).* W przeciwnym wypadku, uwzględnienie wpływu wyboczenia w środku słupa sprawi, że przypadek wymiarujący będzie dotyczył przekroju środkowego (przypadek bardziej niekorzystny).

Kierunek Y − Wyłączon	y		
Y	C Niep	zesuwna suwna	
	L _y =	10,0000	m
	L _{vy} /L _y =	1,0000	

Rys.3.2 Definicja długości wyboczeniowej słupa.

W oknie dialogowym *Obciążenia* podać obciążenia: siłę osiową ściskającą *N* oraz moment zginający w dolnym przekroju słupa *My (Rys. 3.3).*

Wpisać współczynnik obciążeń długotrwałych do krótkotrwałych $\frac{N_d}{N} = 1$.

Lp.	Przypadek	Natura	Grupa	N (kN)	Myg (kN*m)	Myd (kN*m)	My (kN*m)	Mzg (kN*m)	Mzd (kN*m)	Mz (kN*m)	Nd/N	Y
1	OBL.1	obliczeniowe	1	1400,00	0,00	60,00	36,00	0,00	0,00	0,00	1,00	1,00
*												

Rys.3.3 Tabela z obciążeniami przypadającymi na słup.

Ponieważ analizowany przykład dotyczy ramy płaskiej, w oknie *Opcje Obliczeniowe/Ogólne* należy zaznaczyć opcję: *Wymiarowanie na jednokierunkowe zginanie* – kierunek *M_y*. W przeciwnym wypadku program dokonałby dodania mimośrodu niezamierzonego w kierunku prostopadłym do płaszczyzny ramy (*Rys. 3.4*).

Wymiarowanie na jednokierunkowe zginanie
 Kierunek My
 Kierunek Mz

Rys.3.4 Definicja wymiarowania na zginanie jednokierunkowe słupa

WYNIKI OBLICZEŃ ZBROJENIA:

Zbrojenie wygenerowane automatycznie przez program Robot (*Rys. 3.5*), *jest różne od z*brojenia podanego w [3] (*Rys. 3.6*). Należy pamiętać, że zbrojenie generowane automatycznie przez program jest zawsze symetryczne.

Rys.3.5. Zbrojenie wygenerowane automatycznie przez program. Pręty narożne - $4\phi 18$, pręty pośrednie - $4\phi 1\tilde{6}$

Rys.3.6. Zbrojenie podane w [3]. Pręty bardziej ściskane - 3\phi20, pręty mniej ściskane - 2\phi12.

WYNIKI OBLICZEŃ MIMOŚRODU CAŁKOWITEGO:

Wartość	Jednostka	Wyniki podane w [3]	Wyniki obliczeń "ręcznych"	Wyniki obliczeń programu Robot
e _e	(cm)	4,28	4,28	4,28
e _a	(cm)	1,67	1,67	1,67
e ₀	(cm)	5,95	5,95	5,95
e _{tot}	(mm)	5,95	5,95	5,95

KOŃCOWA WERYFIKACJA:

Wielkość	[2]	Robot
A_s	$11,69 \text{ cm}^2$	$18,22 \text{ cm}^2 *$
(Rd/Sd)	(1,03)	(1,02)
M_{tot}	83,33 kNm	83,33 kNm

WNIOSKI:

*Z uwagi na założenia symetrycznego zbrojenia program Robot wygenerował zbrojenie większe niż obliczone w [3].

PRZYKŁAD WERYFIKACYJNY 4 - Słup ściskany z dwukierunkowym mimośrodem

TYTUŁ:

Słup ściskany z dwukierunkowym mimośrodem.

OPIS ZADANIA:

Dokonano obliczeń zbrojenia słupa prostokątnego dwukierunkowo zginanego. Wyniki obliczeń zilustrowano odpowiednimi wynikami obliczeń "ręcznych", a następnie dokonano weryfikacji nośności obliczonego zbrojenia w oparciu o metodę uproszczoną według [1]. Przykład ilustruje więc krok po kroku schemat obliczeń słupa żelbetowego w programie Robot.

DANE:

1. Geometria przekroju

2. Materiały

Beton:	B20	fcd = 10,60 (MPa)
Zbrojenie:	A-III	f _{yd} = 350 (MPa)
Współczynnik pełzania betonu:	φ = 2	

3. Model wyboczeniowy słupa:

Model wyboczeniowy	_ _ X
Kierunek Y Wyłączony Image: Strategy of the strategy of th	Zastosuj Zamknij Pomoc Zap ^{Parametry kondy} Zusuń
Kierunek Z Wyłączony $n=2$ L Przesuwna Lz 5,00 M L _{oz} /Lz	

Jak widać, przyjęto konstrukcję przesuwną dla kierunku Z i nieprzesuwną dla kierunku Y.

UWAGA: kierunek Y oznacza tu, że analizujemy wyboczenie z płaszczyzny XY, a zatem takie, które powoduje zwiększenie momentu My. Analogicznie parametry wyboczeniowe dla kierunku Z odpowiadają za zwiększenie momentu Mz.

4. Obciążenia (obliczeniowe)

🖽 Obciążenia														×
My Mx	Lp.	Przypadek	Natura	Grupa	N (kN)	Myg (kN²m)	Myd (kN'm)	My (kN²m)	Mzg (kN'm)	Mzd (kN'm)	Mz (kN'm)	нал	γ	
M,	1	G1	stałe	1	500,00	100,00	10,00	64,00	40,00	60,00	52,00	1,00	1,10	
	2	Q1	zmienne	1	200,00	50,00	20,00	38,00	10,00	40,00	28,00	1,00	1,30	
	*													
M ² _y M _y														
M ^D _y × z M ^D ₇						aj obciąże	nia z górr Usuń w	rego słupi szustkie	a 1 [<u>ОК</u>		nului	Por	000
Ky *						·····	Coall W	1290.00		0.0		- ionorf		

5. Obliczone zbrojenie:

Program wygenerował zbrojenie w postaci prętów 12\u00f316

N		•
-		
┢──		
		-
		-,

6. Wyniki obliczeń przekroju:

Wymiarującą kombinacją jest 1.1 G1+1.3 Q1

Przekrojem wymiarującym (gdzie występuje najbardziej niekorzystny układ sił) dla powyższej kombinacji jest **przekrój w środkowej części słupa**.

Opis	N (kll)	My (kN'm)	Mz (kN²m)		
.10G1+1.30Q1 (Ms)	810,00	191,20	97,0		
.10G1+1.30Q1 (Mm)	810,00	145,95	153,79		
.10G1+1.30Q1 (Mi)	810,00	53,20	192,8		
.10G1 (Ms)	550,00	121,00	65,71		
.10G1 (Mm)	550,00	85,35	83,13		
.10G1 (Mi)	550,00	22,00	94,8		
.90G1+1.30Q1 (Ms)	710,00	169,20	79,9		
.90G1+1.30Q1 (Mm)	710,00	128,91	129,6		
.90G1+1.30Q1 (Mi)	710,00	49,20	163,7		
1	Rd / Sd MRd / MSd NRd / NSd	1,00 1,00 1,00	< 1,03 < 1,04 < 1,34		

Ponieważ słup został zakwalifikowany, jako smukły, w przekroju środkowym w obu kierunkach uwzględniono wpływ smukłości (patrz punkt 7.2).

Jednocześnie zostały sprawdzone przekroje górny i dolny dla wszystkich kombinacji. Dla pozostałych przekrojów współczynnik nośności osiąga jednak bardziej korzystne wartości, niż dla przekroju środkowego.

W przekrojach górnym i dolnym dla kierunku Y nie uwzględniono wpływu smukłości, gdyż dla tego kierunku konstrukcja jest nieprzesuwna. W kierunku Z natomiast uwzględniono wpływ smukłości również na końcach słupa (konstrukcja przesuwna), zatem moment Mz uwzględnia wpływy wyboczenia w każdym z przekrojów wymiarowanego słupa.

Wyniki obliczeń momentów końcowych (tj. z ewentualnym uwzględnieniem wpływu smukłości) oraz odpowiadające takim układom współczynniki nośności można obejrzeć dla każdej kombinacji i dla każdego przekroju w tabeli Wytężenia przekroju.

7. Sprawdzenie obliczeń momentu wymiarującego:

7.1. Obciążenia statyczne

Dla kombinacji wymiarującej, obciążenia statyczne przypadające na słup mają postać:

		Ν	MyA	MyB	MyC	MzA	MzB	MzC
Lp.	Przypadek	(kN)	(kN*m)	(kN*m)	(kŇ*m)	(kN*m)	(kN*m)	(kN*m)
1	G1	500	100	10	64	40	60	52
2	Q1	200	50	20	38	10	40	28
Kombinacja wymiarująca	1.1G1+1.3Q1	810	175	37	119,8	57	118	93,6

gdzie: indeks A odpowiada przekrojowi górnemu, indeks B - dolnemu, a C oznacza moment w środkowej części słupa.

7.2. Uwzględnienie wpływu smukłości (obliczenia momentu wymiarującego)

Poniższe obliczenia ilustrują, w jaki sposób obliczane są momenty wymiarujące z uwzględnieniem wpływu smukłości.

Przeprowadzone są dwa niezależne obliczenia momentów wymiarujących dla dwóch kierunków działania momentu.

KIERUNEK Y

Smukłość:

$$\lambda = \frac{l_0}{i} = 28,9$$

 $l_0 = 5,00 \text{ (m)}$
 $i = 17,3 \text{ (cm)}$

 $\lambda > 25$ należy uwzględnić wpływ smukłości

Momenty statyczne działające na końcach słupa:

Wymiarującym przekrojem jest przekrój środkowy, należy więc obliczyć mimośród zgodnie ze wzorem (32):

$$e_e = \left| \frac{0.6M1 + 0.4M2}{Nsd} \right| = 14.8 \text{ (cm)}$$
 (32)

$$e_e \ge e_{e\min} = |0,4M1/Nsd| = 1,8 \text{ (cm)}$$
 (33)

Mimośród niezamierzony:

$$e_{a} = \max \begin{cases} \frac{1}{600} l_{col} \\ \frac{h}{30} = 2,0 \text{ (cm)} \\ 2cm \end{cases}$$
(5.3.2)
$$l_{col} = 5,00 \text{ (m)} \\ h = 60,0 \text{ (cm)} \end{cases}$$

Mimośród początkowy wyraża się więc wzorem (31):

$$e_0 = e_a + e_e = 16.8 \text{ (cm)}$$
 (31)

Obliczenie siły krytycznej zgodnie ze wzorem (38):

$$N_{crit} = \frac{9}{l_0^2} \left[\frac{E_{cm} I_c}{2k_{lt}} \left(\frac{0.11}{0.1 + \frac{e_0}{h}} + 0.1 \right) + E_s I_s \right] = 11877,97 \text{ (kN)}$$
(38)
$$l_0 = 5.00 \text{ (m)}$$
$$E_{cm} = 28540,14 \text{ (MPa)}$$
$$I_c = 720000,0 \text{ (cm4)}$$
$$E_s = 200000,00 \text{ (MPa)}$$

Obliczenie momentu bezwładności stali przeprowadzane jest zgodnie ze schematem:

$$\begin{split} I_{s} &= \sum_{i} As^{i} \cdot z^{i} = 7037,2 \text{ (cm}^{4}) \\ k_{lt} &= 1 + 0,5 \frac{N_{Sd,lt}}{N_{Sd}} \varphi(\infty, t_{o}) = 2,00 \\ \varphi(\infty, t_{0}) &= 2,00 \\ \frac{N_{Sd,lt}}{N_{Sd}} &= 1,00 \end{split}$$

$$\frac{e_0}{h} = 0.28$$

$$e_0 = 16.8 \text{ (cm)}$$

$$h = 60.0 \text{ (cm)}$$

$$\frac{e_0}{h} < \max(0.05; 0.5 - 0.01 \cdot l_0 / h - 0.01 \cdot f_{cd}) = 0.31$$
Przyjęto więc $\frac{e_0}{h} = 0.31$

Współczynnik zwiększający mimośród początkowy wynosi więc zgodnie ze wzorem (37):

$$\eta = \frac{1}{1 - \frac{N_{Sd}}{N_{crit}}} = 1,073 \tag{37}$$

Mimośród całkowity zgodnie ze wzorem (36) wynosi:

$$e_{tot} = \eta \cdot e_0 = 18,0 \text{ (cm)}$$
 (36)

Moment wymiarujący jest więc równy:

$$\boldsymbol{M}_{\boldsymbol{y}} = \boldsymbol{N}_{\boldsymbol{sd}} \cdot \boldsymbol{e}_{\boldsymbol{tot},\boldsymbol{z}} = \text{145,95 (kN*m)}$$

KIERUNEK Z

Smukłość:

$$\lambda = \frac{l_0}{i} = 69,3$$

$$l_0 = 8,00 \text{ (m)}$$

$$i = 11,5 \text{ (cm)}$$

$$\lambda > 25 \qquad \text{należy uwzglednić wpły}$$

 $\lambda > 25$ należy uwzględnić wpływ smukłości

Momenty działające na końcach słupa: M1 = 118,00 (kN*m) M2 = 57,00 (kN*m)

Wymiarującym przekrojem jest przekrój środkowy, należy więc obliczyć mimośród zgodnie ze wzorem (32):

$$e_e = \left| \frac{0.6M1 + 0.4M2}{Nsd} \right| = 11.6 \text{ (cm)}$$
 (32)

$$e_e \ge e_{e\min} = |0,4M1/Nsd| = 2,8 \text{ (cm)}$$
 (33)

Mimośród niezamierzony:

$$e_{a} = \max \begin{cases} \left(1 + \frac{1}{n}\right) \frac{1}{600} l_{col} \\ \frac{h}{30} = 1,7 \text{ (cm)} \\ 2cm \end{cases}$$
(5.3.2)
$$l_{col} = 8,00 \text{ (m)}$$

Mimośród początkowy wyraża się więc wzorem (31):

 $e_0 = e_a + e_e = 13,2 \text{ (cm)}$ (31) Obliczenie siły krytycznej zgodnie ze wzorem (38):

$$N_{crit} = \frac{9}{l_0^2} \left[\frac{E_{cm}I_c}{2k_{lt}} \left[\frac{0,11}{0,1 + \frac{e_0}{h}} + 0,1 \right] + E_s I_s \right] = 2668,19 \text{ (kN)}$$
(38)
$$l_0 = 8,00 \text{ (m)}$$
$$E_{cm} = 28540,14 \text{ (MPa)}$$
$$I_c = 320000,0 \text{ (cm4)}$$
$$E_s = 200000,00 \text{ (MPa)}$$

Obliczenie momentu bezwładności stali przeprowadzane jest zgodnie ze schematem:

$$\begin{split} I_{s} &= \sum_{i} As^{i} \cdot z^{i} = 5428,7 \text{ (cm4)} \\ k_{lt} &= 1 + 0,5 \frac{N_{Sd,lt}}{N_{Sd}} \varphi(\infty,t_{o}) = 2,00 \\ \varphi(\infty,t_{0}) &= 2,00 \\ \frac{N_{Sd,lt}}{N_{Sd}} &= 1,00 \\ \frac{e_{0}}{h} &= 0,33 \\ e_{0} &= 13,2 \text{ (cm)} \\ h &= 40,0 \text{ (cm)} \\ \frac{e_{0}}{h} &> \max(0,05;0,5 - 0,01 \cdot l_{0} / h - 0,01 \cdot f_{cd}) = 0,19 \\ \text{Przyjęto więc } \frac{e_{0}}{h} &= 0,31 \end{split}$$

Współczynnik zwiększający mimośród początkowy wynosi, więc zgodnie ze wzorem (37):

$$\eta = \frac{1}{1 - \frac{N_{Sd}}{N_{crit}}} = 1,436 \tag{37}$$

Mimośród całkowity zgodnie z wzorem (36) wynosi:

$$e_{tot} = \eta \cdot e_0 = 19,0 \text{ (cm)}$$
 (36)

Moment wymiarujący jest więc równy:

$$\boldsymbol{M}_{z}=\boldsymbol{N}_{sd}\cdot\boldsymbol{e}_{tot,y}=\text{153,79}\text{ (kN*m)}$$

7.3. Wyniki końcowe obliczeń momentów

$$M_{y} = N_{sd} \cdot e_{tot,z} = 145,95 \text{ (kN*m)}$$
$$M_{z} = N_{sd} \cdot e_{tot,y} = 153,79 \text{ (kN*m)}$$

8. WNIOSKI

Zaprezentowane obliczenia ręczne dowodzą poprawności obliczeń wykonanych z użyciem programu Robot. Momenty obliczone w programie (patrz punkt 6 – Wyniki obliczeń przekroju) są takie same jak momenty wynikające z obliczeń ręcznych (patrz punkt 7.3 – Wyniki końcowe obliczeń momentów).

LITERATURA

- [1] PN-B-03464:2002. Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie.
- [2] Sekcja Konstrukcji Betonowych KLIW PAN: Podstawy projektowania konstrukcji żelbetowych i sprężonych, Wyd. I, Wrocław 2006
- [3] Łapko A., Jensen B. Ch.: Podstawy projektowania i algorytmy obliczeń konstrukcji żelbetowych, Wyd. I, Warszawa 2005